The Influence of Neck Stiffness on Head Kinematics and Maximum Principal Strain Associated With Youth American Football Collisions

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Ottawa
  • | 2 University College Dublin
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Understanding the relationship between head mass and neck stiffness during direct head impacts is especially concerning in youth sports where athletes have higher proportional head mass to neck strength. This study compared 2 neck stiffness conditions for peak linear and rotational acceleration and brain tissue deformations across 3 impact velocities, 3 impact locations, and 2 striking masses. A pendulum fitted with a nylon cap was used to impact a fifth percentile hybrid III headform equipped with 9 accelerometers and fitted with a youth American football helmet. The 2 neck stiffness conditions consisted of a neckform with and without resistance in 3 planes, representing the upper trapezius, the splenius capitis, and the sternocleidomastoid muscles. Increased neck stiffness resulted in significant changes in head kinematics and maximum principal strain specific to impact velocity, impact location, and striking mass.

Cournoyer, Koncan, and Hoshizaki are with the Neurotrauma Impact Science Laboratory, University of Ottawa, Ottawa, ON, Canada. Gilchrist is with the Department of Mechanical Engineering, University College Dublin, Dublin, Ireland.

Cournoyer (jcournoy@uottawa.ca) is corresponding author.
  • 1.

    Chenoweth L, Selkirk T. School Health Problems. New York, NY: Crofth; 1937.

  • 2.

    Huelke D. An overview of anatomical considerations of infants and children in the adult world of automobile safety design. Proceedings of the Association for the Advancement of Automotive Medicine; 1998:93113. Charlottesville, VA.

    • Search Google Scholar
    • Export Citation
  • 3.

    Vickers V, Stuart H. Anthropometry in the pediatrician’s office: norms for selected body measurements based on studies of children of north European stock. J Pediatr. 1943;22(2):155170. doi:10.1016/S0022-3476(43)80074-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Mihalik J, Guskiewicz K, Marshall S, Greenwald R, Blackburn J, Cantu R. Does cervical muscle strength in youth ice hockey players affect head impact biomechanics. Clin J Sport Med. 2011;21(5):416421. PubMed ID: 21892015 doi:10.1097/JSM.0B013E31822C8A5C

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Tierney R, Higgins M, Caswell S, et al. Sex differences in head acceleration during heading while wearing soccer headgear. J Athl Train. 2008;43(6):578584. PubMed ID: 19030135 doi:10.4085/1062-6050-43.6.578

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Viano DC, Casson IR, Pellman EJ. Concussion in professional football: biomechanics of the struck player—part 14. Neurosurgery. 2007;61(2):313328. PubMed ID: 17762744 doi:10.1227/01.NEU.0000279969.02685.D0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Eckner J, Oh Y, Joshi M, Richardson J, Ashton-Miller J. Effect of neck muscle strength and anticipatory cervical muscle activation on the kinematic responses of the head to impulsive loads. Am J Sports Med. 2014;42(3):566576. PubMed ID: 24488820 doi:10.1177/0363546513517869

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Wong R, Wong A, Bailes J. Frequency, magnitude, and distribution of head impacts in Pop Warner football: the cumulative burden. Clin Neurol Neurosurg. 2014;118:14. PubMed ID: 24529219 doi:10.1016/j.clineuro.2013.11.036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Young T, Daniel R, Rowson S, Duma S. Head impact exposure in youth football: elementary school ages 7–8 years and the effect of returning players. Clin J Sport Med. 2014;24(5):416421. PubMed ID: 24326933 doi:10.1097/JSM.0000000000000055

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Cobb B, Urban J, Davenport E, et al. Head impact exposure in youth football: elementary school ages 9–12 and the effect of practice structure. Ann Biomed Eng. 2013;41:24632473. PubMed ID: 23881111 doi:10.1007/s10439-013-0867-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Hildenbrand K, Vasavada A. Collegiate and high school athlete neck strength in neutral and rotated postures. J Strength Cond Res. 2013;27(1):31733182. PubMed ID: 23439331 doi:10.1519/JSC.0b013e31828a1fe2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Walsh E, Kendall M, Post A, Meehan A, Hoshizaki T. Comparative analysis of Hybrid III neckform and an unbiased neckform. Sports Eng. 2018;21(4):479485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Hamilton D, Gatherer D, Jenkins P, et al. Age-related differences in the neck strength of adolescent rugby players. Bone Joint Res. 2012;1(7):152157. PubMed ID: 23610685 doi:10.1302/2046-3758.17.2000079

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hager-Ross C, Rosblad B. Norms for grip strength in children aged 4–16 years. Acta Paediatr. 2002;91(6):614625. PubMed ID: 12162590 doi:10.1080/080352502760068990

    • Search Google Scholar
    • Export Citation
  • 15.

    Tierney R, Sitler M, Swanik C, Higgins M, Torg J. Gender differences in head-neck segment dynamic stabilization during head acceleration. Med Sci Sports and Exerc. 2005;37(2):272279. PubMed ID: 15692324 doi:10.1249/01.mss.0000152734.47516.aa

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Simoneau M, Denninger M, Hain TC. Role of loading on head stability and effective neck stiffness and viscosity. J Biomech. 2008;41(8):20972103. PubMed ID: 18571655 doi:10.1016/j.jbiomech.2008.05.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Padgaonkar A, Krieger K, King A. Measurement of angular acceleration of a rigid body using linear accelerometers. J App Mech. 1975;42(3):552556.

  • 18.

    Campolettano E, Gellner R, Rowson S. Relationship between impact velocity and resulting head accelerations during head impacts in youth football. Athens, Greece: Proceedings of the International IRCOBI Conference on the Biomechanics of Impacts; 2018:326333.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Post A, Clark JM, Robertson DGE, Hoshizaki TB, Gilchrist MD. The effect of acceleration signal processing for head impact numeric simulations. Sports Eng. 2016;20(2):111119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Nelhaus G. Head circumference from birth to eighteen years: practical composite and interracial graphs. Pediatrics. 1968;41(1):106114. PubMed ID: 5635472

    • Search Google Scholar
    • Export Citation
  • 21.

    Horgan T, Gilchrist M. The creation of three-dimensional finite element models for simulating head impact biomechanics. Int J Crashworthiness. 2003;8(4):353366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Kleiven, S. Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J. 2007;51:81114. PubMed ID: 18278592

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Patton D, McIntosh A, Kleiven S. The biomechanical determinants of concussions: finite element simulations to investigate brain tissue deformations during sporting impacts to the unprotected head. J Appl Biomech. 2013;29:721730. PubMed ID: 23434739 doi:10.1123/jab.29.6.721

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Jin X, Feng Z, Mika V, Li H, Viano D, Yang K. The role of neck muscle activities on the risk of mild traumatic brain injury in American football. J Biomed Eng. 2017;139(10):17. PubMed ID: 28753688 doi:10.1115/1.4037399

    • Search Google Scholar
    • Export Citation
  • 25.

    Rousseau P, Post A, Gilchrist M, Hoshizaki T. Estimating the influence of neckform compliance on brain tissue strain during a helmeted impact. Stapp Car Crash J. 2010;54:3748. PubMed ID: 21516523

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    DeGoede K, Ashton-Miller J. Biomechanical simulations of forward fall arrests: effects of upper extremity arrest strategy, gender and aging-related declines in muscles strength. J Biomech. 2003;36:413420. PubMed ID: 12594989 doi:10.1016/s0021-9290(02)00396-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Sandler R, Robinovitch S. An analysis of the effect of lower extremity strength on impact severity during a backward fall. J Biomed Eng. 2001;123(6):590598. PubMed ID: 11783730 doi:10.1115/1.1408940

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 26 26 26
Full Text Views 244 244 65
PDF Downloads 119 119 38