Poststretch Isometric Contractions of the Hamstrings: Just a Brief Stretch to Achieve Supramaximal Isometric Force

in Journal of Applied Biomechanics
View More View Less
  • 1 Southern Cross University
  • | 2 Bond University
  • | 3 University of the Sunshine Coast
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

Hamstring strain injuries are common in sport. Supramaximal eccentric or high-intensity isometric contractions are favored in hamstring strain injury prevention. The effect of combining these contraction modes in such prevention programs as a poststretch isometric contraction is unknown. Poststretch isometric contractions incorporate an active stretch and result in greater final isometric force than isometric contractions at comparable joint angles. This study compared torque and muscle activation levels between maximal voluntary isometric contraction and maximal poststretch isometric contractions of the knee flexors. Participants (n = 9) completed baseline maximal voluntary isometric contraction at 150° knee flexion and maximal poststretch isometric contractions at 120° knee flexion actively stretching at 60°/s to 150° knee flexion for final isometric contraction. Torque of the knee flexors and surface electromyography root mean square (sEMGRMS) of biceps femoris long head were simultaneously recorded and compared between baseline and poststretch isometric at 150° knee flexion. Torque was 14% greater in the poststretch isometric condition compared with baseline maximal voluntary isometric contraction (42.45 [20.75] N·m, 14% [22.18%], P < .001) without increase in sEMGRMS of biceps femoris long head (−.03 mV, ±.06, P = .130, d = .93). Poststretch isometric contractions resulted in supramaximal levels of poststretch isometric torque without increased activation of biceps femoris long head.

Chapman, William Whitting, Crowley-McHattan, and Meir are with Southern Cross University, Lismore, NSW, Australia. Chapman is also with Bond University, Robina, QLD, Australia. Broadbent is with the University of the Sunshine Coast, Sippy Downs, QLD, Australia.

Chapman (Neil.chapman@scu.edu.au) is corresponding author.
  • 1.

    Green B, Bourne MN, van Dyk N, Pizzari T. Recalibrating the risk of hamstring strain injury (HSI): A 2020 systematic review and meta-analysis of risk factors for index and recurrent HSI in sport. Br J Sports Med. 2020;54(18):1081–1088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Bennell KL, Crossley K. Musculoskeletal injuries in track and field: incidence, distribution and risk factors. Aust J Sci Med Sport. 1996;28(3):6975. PubMed ID: 8937661

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Brooks JH, Fuller CW, Kemp SP, Reddin DB. Incidence, risk, and prevention of hamstring muscle injuries in professional rugby union. Am J Sports Med. 2006;34(8):12971306. PubMed ID: 16493170 doi:10.1177/0363546505286022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Ekstrand J, Hagglund M, Walden M. Injury incidence and injury patterns in professional football: the UEFA injury study. Br J Sports Med. 2011;45(7):553558. PubMed ID: 19553225 doi:10.1136/bjsm.2009.060582

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Feeley BT, Kennelly S, Barnes RP, et al. . Epidemiology of National Football League training camp injuries from 1998 to 2007. Am J Sports Med. 2008;36(8):15971603. PubMed ID: 18443276 doi:10.1177/0363546508316021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Orchard JW, Seward H, Orchard JJ. Results of 2 decades of injury surveillance and public release of data in the Australian Football League. Am J Sports Med. 2013;41(4):734741. PubMed ID: 23460329 doi:10.1177/0363546513476270

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Heiderscheit BC, Sherry MA, Silder A, Chumanov ES, Thelen DG. Hamstring strain injuries: recommendations for diagnosis, rehabilitation, and injury prevention. J Orthop Sports Phys Ther. 2010;40(2):6781. PubMed ID: 20118524 doi:10.2519/jospt.2010.3047

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Huygaerts S, Cos F, Cohen DD, et al. . Mechanisms of hamstring strain injury: interactions between fatigue, muscle activation and function. Sports. 2020;8(5):65. doi:10.3390/sports8050065

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Kenneally-Dabrowski CJB, Brown NAT, Lai AKM, Perriman D, Spratford W, Serpell BG. Late swing or early stance? a narrative review of hamstring injury mechanisms during high-speed running. Scand J Med Sci Sports. 2019;29(8):10831091. PubMed ID: 31033024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Heiderscheit BC, Hoerth DM, Chumanov ES, Swanson SC, Thelen BJ, Thelen DG. Identifying the time of occurrence of a hamstring strain injury during treadmill running: a case study. Clin Biomech. 2005;20(10):10721078. doi:10.1016/j.clinbiomech.2005.07.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Schache AG, Kim HJ, Morgan DL, Pandy MG. Hamstring muscle forces prior to and immediately following an acute sprinting-related muscle strain injury. Gait Posture. 2010;32(1):136140. PubMed ID: 20395142 doi:10.1016/j.gaitpost.2010.03.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Schache AG, Wrigley TV, Baker R, Pandy MG. Biomechanical response to hamstring muscle strain injury. Gait Posture. 2009;29(2):332338. PubMed ID: 19038549 doi:10.1016/j.gaitpost.2008.10.054

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Van Hooren B, Bosch F. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? Part I: a critical review of the literature. J Sports Sci. 2017;35(23):23132321. PubMed ID: 27937671 doi:10.1080/02640414.2016.1266018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Pizzari T, Green B, van Dyk N. Extrinsic and intrinsic risk factors associated with hamstring injury. In: Thorborg K, Opar D, Shield A, eds. Prevention and Rehabilitation of Hamstring Injuries. Cham: Springer; 2020:83–115.

    • Search Google Scholar
    • Export Citation
  • 15.

    Timmins RG, Bourne MN, Shield AJ, Williams MD, Lorenzen C, Opar DA. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): a prospective cohort study. Br J Sports Med. 2016;50(24):15241535. PubMed ID: 26675089 doi:10.1136/bjsports-2015-095362

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Askling C, Karlsson J, Thorstensson A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand J Med Sci Sports. 2003;13(4):244250. PubMed ID: 12859607 doi:10.1034/j.1600-0838.2003.00312.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Askling CM, Tengvar M, Thorstensson A. Acute hamstring injuries in Swedish elite football: a prospective randomized controlled clinical trial comparing two rehabilitation protocols. Br J Sports Med. 2013;47(15):953959. PubMed ID: 23536466 doi:10.1136/bjsports-2013-092165

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Askling CM, Tengvar M, Tarassova O, Thorstensson A. Acute hamstring injuries in Swedish elite sprinters and jumpers: a prospective randomized controlled clinical trial comparing two rehabilitation protocols. Br J Sports Med. 2014;48(7):532539. PubMed ID: 24620041 doi:10.1136/bjsports-2013-093214

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    van der Horst N, Thorborg K, Opar D. Hamstring injury prevention and implementation. In: Thorborg K, Opar D, Shield A, eds. Prevention and Rehabilitation of Hamstring Injuries. Cham: Springer; 2020:145–163.

    • Search Google Scholar
    • Export Citation
  • 20.

    Van Hooren B, Bosch F. Preventing hamstring injuries-Part 2: there is possibly an isometric action of the hamstrings in high-speed running and it does matter. Sport Perf Sci Rep. 2018;1.

    • Search Google Scholar
    • Export Citation
  • 21.

    Van Hooren B, Bosch F. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? Part II: implications for exercise. J Sports Sci. 2017;35(23):23222333. PubMed ID: 27935419 doi:10.1080/02640414.2016.1266019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Bourne MN, Timmins RG, Opar DA, et al. . An evidence-based framework for strengthening exercises to prevent hamstring injury. Sports Med. 2018;48(2):251267. PubMed ID: 29116573 doi:10.1007/s40279-017-0796-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    van der Horst N, Smits DW, Petersen J, Goedhart EA, Backx FJ. The preventive effect of the nordic hamstring exercise on hamstring injuries in amateur soccer players: a randomized controlled trial. Am J Sports Med. 2015;43(6):13161323. PubMed ID: 25794868 doi:10.1177/0363546515574057

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Edman KA, Elzinga G, Noble MI. Residual force enhancement after stretch of contracting frog single muscle fibers. J Gen Physiol. 1982;80(5):769784. PubMed ID: 6983564 doi:10.1085/jgp.80.5.769

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hahn D, Seiberl W, Schmidt S, Schweizer K, Schwirtz A. Evidence of residual force enhancement for multi-joint leg extension. J Biomech. 2010;43(8):15031508. PubMed ID: 20167325 doi:10.1016/j.jbiomech.2010.01.041

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Campbell SG, Campbell KS. Mechanisms of residual force enhancement in skeletal muscle: insights from experiments and mathematical models. Biophys Rev. 2011;3(4):199207. PubMed ID: 22180761 doi:10.1007/s12551-011-0059-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Herzog W, Leonard TR. The history dependence of force production in mammalian skeletal muscle following stretch-shortening and shortening-stretch cycles. J Biomech. 2000;33(5):531542. PubMed ID: 10708773 doi:10.1016/S0021-9290(99)00221-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Peterson DR, Rassier DE, Herzog W. Force enhancement in single skeletal muscle fibres on the ascending limb of the force-length relationship. J Exp Biol. 2004;207(16):27872791. doi:10.1242/jeb.01095

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Rassier DE, Herzog W, Wakeling J, Syme DA. Stretch-induced, steady-state force enhancement in single skeletal muscle fibers exceeds the isometric force at optimum fiber length. J Biomech. 2003;36(9):13091316. PubMed ID: 12893039 doi:10.1016/S0021-9290(03)00155-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Schachar R, Herzog W, Leonard TR. The effects of muscle stretching and shortening on isometric forces on the descending limb of the force-length relationship. J Biomech. 2004;37(6):917926. PubMed ID: 15111079 doi:10.1016/j.jbiomech.2003.10.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Pinnell RAM, Mashouri P, Mazara N, Weersink E, Brown SHM, Power GA. Residual force enhancement and force depression in human single muscle fibres. J Biomech. 2019;91:164169. PubMed ID: 31155213 doi:10.1016/j.jbiomech.2019.05.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Cook CS, McDonagh MJ. Force responses to controlled stretches of electrically stimulated human muscle-tendon complex. Exp Physiol. 1995;80(3):477490. PubMed ID: 7640012 doi:10.1113/expphysiol.1995.sp003862

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Lee HD, Herzog W. Force enhancement following muscle stretch of electrically stimulated and voluntarily activated human adductor pollicis. J Physiol. 2002;545(1):321330. PubMed ID: 12433972 doi:10.1113/jphysiol.2002.018010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Pinniger GJ, Cresswell AG. Residual force enhancement after lengthening is present during submaximal plantar flexion and dorsiflexion actions in humans. J Appl Physiol. 2007;102(1):1825. doi:10.1152/japplphysiol.00565.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Ruiter CJ, Didden WJ, Jones DA, Haan AD. The force-velocity relationship of human adductor pollicis muscle during stretch and the effects of fatigue. J Physiol. 2000;526(3):671681. doi:10.1111/j.1469-7793.2000.00671.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Oskouei AE, Herzog W. Observations on force enhancement in submaximal voluntary contractions of human adductor pollicis muscle. J Appl Physiol. 2005;98(6):20872095. doi:10.1152/japplphysiol.01217.2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Tilp M, Steib S, Herzog W. Force-time history effects in voluntary contractions of human tibialis anterior. Eur J Appl Physiol. 2009;106(2):159166. PubMed ID: 19214557 doi:10.1007/s00421-009-1006-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Bullimore SR, Leonard TR, Rassier DE, Herzog W. History-dependence of isometric muscle force: effect of prior stretch or shortening amplitude. J Biomech. 2007;40(7):15181524. PubMed ID: 16919641 doi:10.1016/j.jbiomech.2006.06.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Edman K, Elzinga G, Noble M. Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres. J Physiol. 1978;281(1):139155. doi:10.1113/jphysiol.1978.sp012413

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Herzog W, Leonard TR. The role of passive structures in force enhancement of skeletal muscles following active stretch. J Biomech. 2005;38(3):409415. PubMed ID: 15652538 doi:10.1016/j.jbiomech.2004.05.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Sugi H, Tsuchiya T. Stiffness changes during enhancement and deficit of isometric force by slow length changes in frog skeletal muscle fibres. J Physiol. 1988;407(1):215229. doi:10.1113/jphysiol.1988.sp017411

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Julian F, Morgan D. The effect on tension of non‐uniform distribution of length changes applied to frog muscle fibres. J Physiol. 1979;293(1):379392. doi:10.1113/jphysiol.1979.sp012895

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Morgan DL, Whitehead NP, Wise AK, Gregory JE, Proske U. Tension changes in the cat soleus muscle following slow stretch or shortening of the contracting muscle. J Physiol. 2000;522(3):503513. doi:10.1111/j.1469-7793.2000.t01-2-00503.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Shim J, Garner B. Residual force enhancement during voluntary contractions of knee extensors and flexors at short and long muscle lengths. J Biomech. 2012;45(6):913918. PubMed ID: 22356842 doi:10.1016/j.jbiomech.2012.01.026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Hermens HJ, Freriks B, Merletti R, et al. . European recommendations for surface electromyography. Roessingh Research and Development. 1999;8(2):1354.

    • Search Google Scholar
    • Export Citation
  • 46.

    Dalton BH, Contento VS, Power GA. Residual force enhancement during submaximal and maximal effort contractions of the plantar flexors across knee angle. J Biomech. 2018;78:7076. PubMed ID: 30037580 doi:10.1016/j.jbiomech.2018.07.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Rice ME, Harris GT. Comparing effect sizes in follow-up studies: ROC Area, Cohen’s d, and r. Law Hum Behav. 2005;29(5):615620. PubMed ID: 16254746 doi:10.1007/s10979-005-6832-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Chapman N, Whitting J, Broadbent S, Crowley-McHattan Z, Meir R. Residual force enhancement in humans: a systematic review. J Appl Biomech. 2018;34(3):240248. PubMed ID: 29364041 doi:10.1123/jab.2017-0234

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Seiberl W, Hahn D, Kreuzpointner F, Schwirtz A, Gastmann U. Force enhancement of quadriceps femoris in vivo and its dependence on stretch-induced muscle architectural changes. J Appl Biomech. 2010;26(3):256264. PubMed ID: 20841616 doi:10.1123/jab.26.3.256

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Fukutani A, Misaki J, Isaka T. Influence of preactivation on fascicle behavior during eccentric contraction. Springerplus. 2016;5(1):760. PubMed ID: 27386245 doi:10.1186/s40064-016-2550-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Seiberl W, Hahn D, Herzog W, Schwirtz A. Feedback controlled force enhancement and activation reduction of voluntarily activated quadriceps femoris during sub-maximal muscle action. J Electromyogr Kinesiol. 2012;22(1):117123. PubMed ID: 22115525 doi:10.1016/j.jelekin.2011.10.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Chen J, Power GA. Modifiability of the history dependence of force through chronic eccentric and concentric biased resistance training. J Appl Physiol. 2019;126(3):647657. doi:10.1152/japplphysiol.00928.2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Fukutani A, Shimoho K, Isaka T. Isometric preactivation before active lengthening increases residual force enhancement. Scand J Med Sci Sports. 2019;29(8):11531160. PubMed ID: 31058376 doi:10.1111/sms.13454

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Mahmood S, Sawatsky A, Herzog W. Increased force following muscle stretching and simultaneous fibre shortening: residual force enhancement or force depression–That is the question? J Biomech. 2021;116:110216. PubMed ID: 33460865 doi:10.1016/j.jbiomech.2020.110216

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Bobbert MF, Casius LJR. Is the effect of a countermovement on jump height due to active state development? Med Sci Sports Exerc. 2005;37(3):440446. PubMed ID: 15741843 doi:10.1249/01.MSS.0000155389.34538.97

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Chleboun GS, France AR, Crill MT, Braddock HK, Howell JN. In vivo measurement of fascicle length and pennation angle of the human biceps femoris muscle. Cells Tissues Organs. 2001;169(4):401409. PubMed ID: 11490120 doi:10.1159/000047908

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    de Vos R-J, Reurink G, van der Made AD, Kerkhoffs GM, Purdam C, Thorborg K. When hamstring injury rehabilitation fails. In: Thorborg K, Opar D, Shield A, eds. Prevention and Rehabilitation of Hamstring Injuries. Cham: Springer; 2020:315–347.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 295 295 154
Full Text Views 158 158 79
PDF Downloads 122 122 76