Comparing Leg Quasi-Stiffness Methods Across Running Velocities

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Massachusetts Amherst
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

This study investigated the differences between 5 commonly used methods to calculate leg stiffness over a range of running velocities. Thirteen male, habitually rearfoot, recreational runners ran on a force instrumented treadmill for a 5-minute running session. Each session consisted of 30-second intervals at 6 progressively faster speeds from 2.5 m·s−1 through 5.0 m·s−1 with each interval speed increasing by 0.5 m·s−1. Two-way within-factors repeated-measures analyses of variance were used to evaluate leg stiffness and length. A one-way repeated-measures analysis of variance was used to evaluate the slope of each trend line of each model across speeds. Pearson correlations were used to compare the relationship between the different computational methods. The results indicated that the direct stiffness methods increased with speed whereas the indirect stiffness methods did not. The direct methods were strongly correlated with each other as were the indirect methods. However, there were no strong correlations between the direct and indirect methods. These differences can be mostly attributed to how each individual stiffness method calculated leg length. It is important for researchers to understand these differences when conducting future studies and comparing past studies.

The authors are with the Biomechanics Laboratory, Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, USA.

Kuzmeski (jkuzmeski@umass.edu) is corresponding author.

Supplementary Materials

    • Supplementary Table S1 (pdf 429 KB)
    • Supplementary Table S2 (pdf 196 KB)
    • Supplementary Table S3 (pdf 196 KB)
    • Supplementary Table S4 (pdf 248 KB)
    • Supplementary Table S5 (pdf 196 KB)
  • 1.

    Arampatzis A, Brüggemann GP, Metzler V. The effect of speed on leg stiffness and joint kinetics in human running. J Biomech. 1999;32(12):13491353. doi:10.1016/s0021-9290(99)00133-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Farley CT, González O. Leg stiffness and stride frequency in human running. J Biomech. 1996;29(2):181186. PubMed ID: 8849811 doi:10.1016/0021-9290(95)00029-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Dalleau G, Belli A, Bourdin M, Lacour JR. The spring-mass model and the energy cost of treadmill running. Eur J Appl Physiol Occup Physiol. 1998;77:257263. PubMed ID: 9535587 doi:10.1007/s004210050330

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Beck ON, Taboga P, Grabowski AM. Reduced prosthetic stiffness lowers the metabolic cost of running for athletes with bilateral transtibial amputations. J Appl Physiol. 2017;122(4):976984. PubMed ID: 28104752 doi:10.1152/japplphysiol.00587.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Seyfarth A, Geyer H, Günther M, Blickhan R. A movement criterion for running. J Biomech. 2002;35(5):649655. PubMed ID: 11955504 doi:10.1016/s0021-9290(01)00245-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Coleman DR, Cannavan D, Horne S, Blazevich AJ. Leg stiffness in human running: comparison of estimates derived from previously published models to direct kinematic-kinetic measures. J Biomech. 2012;45(11):19871991. PubMed ID: 22682258 doi:10.1016/j.jbiomech.2012.05.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Liew BXW, Morris S, Masters A, Netto K. A comparison and update of direct kinematic-kinetic models of leg stiffness in human running. J Biomech. 2017;64:253257. PubMed ID: 29050822 doi:10.1016/j.jbiomech.2017.09.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    McMahon TA, Cheng GC. The mechanics of running: how does stiffness couple with speed? J Biomech. 1990;23:6578. PubMed ID: 2081746 doi:10.1016/0021-9290(90)90042-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Morin JB, Dalleau G, Kyröläinen H, Jeannin T, Belli A. A simple method for measuring stiffness during running. J Appl Biomech. 2005;21(2):167180. PubMed ID: 16082017 doi:10.1123/jab.21.2.167

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Weir G, Willwacher S, Trudeau MB, Wyatt H, Hamill J. The influence of prolonged running and footwear on lower extremity joint stiffness. Med Sci Sport Exerc. 2020;52(12):26082614. doi:10.1249/mss.0000000000002416

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Morin JB, Samozino P, Millet GY. Changes in running kinematics, kinetics, and spring-mass behavior over a 24-h run. Med Sci Sports Exerc. 2011;43(5):829836. PubMed ID: 20962690 doi:10.1249/mss.0b013e3181fec518

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Blum Y, Lipfert SW, Seyfarth A. Effective leg stiffness in running. J Biomech. 2009;42(14):24002405. PubMed ID: 19647825 doi:10.1016/j.jbiomech.2009.06.040

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Cavanagh PR, Lafortune MA. Ground reaction forces in distance running. J Biomech. 1980;13(5):397406. PubMed ID: 7400169 doi:10.1016/0021-9290(80)90033-0

  • 14.

    Cappello A, Cappozzo A, La Palombara PF, Lucchetti L, Leardini A. Multiple anatomical landmark calibration for optimal bone pose estimation. Hum Mov Sci. 1997;16(2):259274. doi:10.1016/S0167-9457(96)00055-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Ferris DP, Farley CT. Runners adjust leg stiffness for their first step on a new running surface. J Biomech. 1999;32(8):787794. PubMed ID: 10433420 doi:10.1016/S0021-9290(99)00078-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Besier TF, Sturnieks DL, Alderson JA, Lloyd DG. Repeatability of gait data using a functional hip joint centre and a mean helical knee axis. J Biomech. 2003;36(8):11591168. PubMed ID: 12831742 doi:10.1016/s0021-9290(03)00087-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Wu G, van der Helm FC, Veeger HE, et al. . ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion–part II: shoulder, elbow, wrist and hand. J Biomech. 2005;38(5):981992. PubMed ID: 15844264 doi:10.1016/j.jbiomech.2004.05.042

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Wu G, Siegler S, Allard P, et al. . ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech. 2002;35(4):543548. PubMed ID: 11934426 doi:10.1016/s0021-9290(01)00222-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Winter DA. Biomechanics and Motor Control of Human Movement. 4th ed. John Wiley & Sons; 2009.

  • 20.

    Dempster WT. Space Requirements of the Seated Operator: Geometrical, Kinematic, and Mechanical Aspects Other Body with Special Reference to the Limbs. Michigan State Univ East Lansing; 1955.

    • Search Google Scholar
    • Export Citation
  • 21.

    Hanavan EP. A Mathematical Model of the human body. AMRL-TR-64-102. AMRL TR, 1964.

  • 22.

    Serpell BG, Ball NB, Scarvell JM, Smith PN. A review of models of vertical, leg, and knee stiffness in adults for running, jumping or hopping tasks. J Sports Sci. 2012;30(13):13471363. PubMed ID: 22845059 doi:10.1080/02640414.2012.710755

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Novacheck TF. The biomechanics of running. Gait Posture. 1998;7(1):7795. PubMed ID: 10200378 doi:10.1016/s0966-6362(97)00038-6

  • 24.

    Hamill J, Gruber AH, Derrick TR. Lower extremity joint stiffness characteristics during running with different footfall patterns. Eur J Sport Sci. 2014;14(2):130136. PubMed ID: 24533519 doi:10.1080/17461391.2012.728249

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Fukuchi RK, Duarte M. Comparison of three-dimensional lower extremity running kinematics of young adult and elderly runners. J Sports Sci. 2008;26(13):14471454. PubMed ID: 18923957 doi:10.1080/02640410802209018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Sinclair J, Greenhalgh a, Edmundson CJ, Brooks D, Hobbs SJ. Gender differences in the kinetics and kinematics of distance running: implications for footwear design. Int J Sport Sci Eng. 2012;6(2):118128.

    • Search Google Scholar
    • Export Citation
  • 27.

    Goerger BM, Marshall SW, Beutler AI, Blackburn JT, Wilckens JH, Padua DA. Anterior cruciate ligament injury alters preinjury lower extremity biomechanics in the injured and uninjured leg: the JUMP-ACL study. Br J Sports Med. 2015;49:188195. PubMed ID: 24563391 doi:10.1136/bjsports-2013-092982

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Cohen J. Statistical Power Analysis for the Behavioural Science. 2nd ed. New York, NY: Lawrence Erlbaum Publishers; 1988.

All Time Past Year Past 30 Days
Abstract Views 69 69 48
Full Text Views 280 280 98
PDF Downloads 275 275 103