Evaluating the Spectrum of Cognitive-Motor Relationships During Dual-Task Jump Landing

in Journal of Applied Biomechanics
View More View Less
  • 1 Montana State University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

Cognitive function plays a role in understanding noncontact anterior cruciate ligament injuries, but the research into how cognitive function influences sport-specific movements is underdeveloped. The purpose of this study was to determine how various cognitive tasks influenced dual-task jump-landing performance along with how individuals’ baseline cognitive ability mediated these relationships. Forty female recreational soccer and basketball players completed baseline cognitive function assessments and dual-task jump landings. The baseline cognitive assessments quantified individual processing speed, multitasking, attentional control, and primary memory ability. Dual-task conditions for the jump landing included unanticipated and anticipated jump performance, with and without concurrent working memory and captured visual attention tasks. Knee kinematics and kinetics were acquired through motion capture and ground reaction force data. Jumping conditions that directed visual attention away from the landing, whether anticipated or unanticipated, were associated with decreased peak knee flexion angle (P < .001). No interactions between cognitive function measures and jump-landing conditions were observed for any of the biomechanical variables, suggesting that injury-relevant cognitive-motor relationships may be specific to secondary task demands and movement requirements. This work provides insight into group- and subject-specific effects of established anticipatory and novel working memory dual-task paradigms on the neuromuscular control of a sport-specific movement.

Fischer and Monfort are with the Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, USA. Hutchison is with the Department of Psychology, Montana State University, Bozeman, MT, USA. Becker is with the Department of Health and Human Performance, Montana State University, Bozeman, MT, USA.

Fischer (patrick.fischer2@student.montana.edu) is corresponding author.
  • 1.

    Herzog MM, Marshall SW, Lund JL, Pate V, Spang JT. Cost of outpatient arthroscopic anterior cruciate ligament reconstruction among commercially insured patients in the United States, 2005–2013. Orthop J Sports Med. 2017;5(1):2325967116684776. PubMed ID: 28210655 doi:10.1177/2325967116684776

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med. 2016;44(7):18611876. PubMed ID: 26772611 doi:10.1177/0363546515621554

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Simon D, Mascarenhas R, Saltzman BM, Rollins M, Bach BR, MacDonald P. The relationship between anterior cruciate ligament injury and osteoarthritis of the knee. Adv Orthop. 2015;2015:928301. PubMed ID: 25954533 doi:10.1155/2015/928301

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Thomas AC, Villwock M, Wojtys EM, Palmieri-Smith RM. Lower extremity muscle strength after anterior cruciate ligament injury and reconstruction. J Athl Train. 2013;48(5):610620. PubMed ID: 24067150 doi:10.4085/1062-6050-48.3.23

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Krosshaug, T, Nakamae A, Boden BP, et al. . Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med. 2007;35(3):359367. PubMed ID: 17092928 doi:10.1177/0363546506293899

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Waldén M, Krosshaug T, Bjørneboe J, Andersen TE, Faul O, Hägglund M. Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: a systematic video analysis of 39 cases. Br J Sports Med. 2015;49(22):14521460. PubMed ID: 25907183 doi:10.1136/bjsports-2014-094573

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Boden BP, Dean GS, Feagin JA, Garrett WE. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573578. PubMed ID: 10875418 doi:10.3928/0147-7447-20000601-15

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Swanik CB, Covassin T, Stearne DJ, Schatz P. The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. Am J Sports Med. 2007;35(6):943948. PubMed ID: 17369562 doi:10.1177/0363546507299532

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    McPherson AL, Shirley MB, Schilaty ND, Larson DR, Hewett TE. Effect of a concussion on anterior cruciate ligament injury risk in a general population. Sports Med. 2020;50(6):12031210. PubMed ID: 31970718 doi:10.1007/s40279-020-01262-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Wilkerson GB, Grooms DR, Acocello SN. Neuromechanical considerations for postconcussion musculoskeletal injury risk management. Curr Sports Med Rep. 2017;16(6):419427. PubMed ID: 29135640 doi:10.1249/JSR.0000000000000430

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Brooks MA, Peterson K, Biese K, Sanfilippo J, Heiderscheit BC, Bell DR. Concussion increases odds of sustaining a lower extremity musculoskeletal injury after return to play among collegiate athletes. Am J Sports Med. 2016;44(3):742747. PubMed ID: 26786903 doi:10.1177/0363546515622387

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Covassin T, Elbin RJ. The cognitive effects and decrements following concussion. Open Access J Sports Med. 2010;2010(1):5561. doi:10.2147/OAJSM.S6919

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Gilbert FC, Burdette GT, Joyner AB, Llewellyn TA, Buckley TA. Association between concussion and lower extremity injuries in collegiate athletes. Sports Health. 2016;8(6):561567. PubMed ID: 27587598 doi:10.1177/1941738116666509

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Herman DC, Jones D, Harrison A, et al. . Concussion may increase the risk of subsequent lower extremity musculoskeletal injury in collegiate athletes. Sports Med. 2017;47(5):10031010. PubMed ID: 27544666 doi:10.1007/s40279-016-0607-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Howell DR, Lynall RC, Buckley TA, Herman DC. Neuromuscular control deficits and the risk of subsequent injury after a concussion: a scoping review. Sports Med. 2018;48(5):10971115. PubMed ID: 29453743 doi:10.1007/s40279-018-0871-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Wilkerson GB. Neurocognitive reaction time predicts lower extremity sprains and strains. Int J Athl Ther Train. 2012;17(6):49. doi:10.1123/ijatt.17.6.4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Shultz SJ, Schmitz RJ, Cameron KL, et al. . Anterior cruciate ligament research retreat VIII summary statement: an update on injury risk identification and prevention across the anterior cruciate ligament injury continuum, March 14–16, 2019, Greensboro, NC. J Athl Train. 2019;54(9):970984. PubMed ID: 31461312 doi:10.4085/1062-6050-54.084

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kahneman D. Attention and Effort. Englewood Cliffs, NJ: Prentice-Hall, Inc; 1973:246.

  • 19.

    Dai B, Cook RF, Meyer EA, et al. . The effect of a secondary cognitive task on landing mechanics and jump performance. Sports Biomech. 2018;17(2):192205. PubMed ID: 28632053 doi:10.1080/14763141.2016.1265579

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Almonroeder TG, Kernozek T, Cobb S, Slavens B, Wang J, Huddleston W. Cognitive demands influence lower extremity mechanics during a drop vertical jump task in female athletes. J Orthop Sports Phys Ther. 2018;48(5):381387. PubMed ID: 29320946 doi:10.2519/jospt.2018.7739

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Brown TN, Palmieri-Smith RM, McLean SG. Sex and limb differences in hip and knee kinematics and kinetics during anticipated and unanticipated jump landings: implications for anterior cruciate ligament injury. Br J Sports Med. 2009;43(13):10491056. PubMed ID: 19372596 doi:10.1136/bjsm.2008.055954

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Herman DC, Barth JT. Drop-jump landing varies with baseline neurocognition: implications for anterior cruciate ligament injury risk and prevention. Am J Sports Med. 2016;44(9):23472353. PubMed ID: 27474381 doi:10.1177/0363546516657338

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Besier TF, Lloyd DG, Ackland TR. Muscle activation strategies at the knee during running and cutting maneuvers. Med Sci Sports Exerc. 2003;35(1):119127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Besier TF, Lloyd DG, Ackland TR, Cochrane JL. Anticipatory effects on knee joint loading during running and cutting maneuvers. Med Sci Sports Exerc. 2001;33(7):11761181. PubMed ID: 11445765 doi:10.1097/00005768-200107000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Besier TF, Lloyd DG, Cochrane JL, Ackland TR. External loading of the knee joint during running and cutting maneuvers. Med Sci Sports Exerc. 2000;33(7):11681175.

    • Search Google Scholar
    • Export Citation
  • 26.

    Cortes N, Blount E, Ringleb S, Onate JA. Soccer-specific video simulation for improving movement assessment. Sports Biomech. 2011;10(1):2234. PubMed ID: 21560749 doi:10.1080/14763141.2010.547591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Monfort SM, Pradarelli JJ, Grooms DR, Hutchison KA, Onate JA, Chaudhari AMW. Visual-spatial memory deficits are related to increased knee valgus angle during a sport-specific sidestep cut. Am J Sports Med. 2019;47(6):14881495. PubMed ID: 30986095 doi:10.1177/0363546519834544

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Shibata S, Takemura M, Miyakawa S. The influence of differences in neurocognitive function on lower limb kinematics, kinetics, and muscle activity during an unanticipated cutting motion. Phys Ther Res. 2018;21(2):4452. PubMed ID: 30697509 doi:10.1298/ptr.E9938

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Giesche F, Wilke J, Engeroff T, et al. . Are biomechanical stability deficits during unplanned single-leg landings related to specific markers of cognitive function? J Sci Med Sport. 2020;23(1):8288. PubMed ID: 31628001 doi:10.1016/j.jsams.2019.09.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Hambrick, DZ, Oswald FL, Darowski ES, Rench TA, Brou R. Predictors of multitasking performance in a synthetic work paradigm. Appl Cogn Psychol. 2010;24(8):11491167. doi:10.1002/acp.1624

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Unsworth N, Fukuda K, Awh E, Vogel EK. Working memory and fluid intelligence: capacity, attention control, and secondary memory retrieval. Cogn Psychol. 2014;71:126. PubMed ID: 24531497 doi:10.1016/j.cogpsych.2014.01.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Pollack I, Johnson LB, Knaff PR. Running memory span. J Exp Psychol. 1959;57(3):137146. PubMed ID: 13641585 doi:10.1037/h0046137

  • 33.

    Hutchison KA. Attentional control and the relatedness proportion effect in semantic priming. J Exp Psychol Learn Mem Cogn. 2007;33(4):645662. PubMed ID: 17576145 doi:10.1037/0278-7393.33.4.645

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Scarpina F, Tagini S. The stroop color and word test. Front Psychol. 2017;8:557. PubMed ID: 28446889 doi:10.3389/fpsyg.2017.00557

  • 35.

    Redick TS, Shipstead Z, Meier ME, et al. . Cognitive predictors of a common multitasking ability: contributions from working memory, attention control, and fluid intelligence. J Exp Psychol Gen. 2016;145(11):14731492. PubMed ID: 27797557 doi:10.1037/xge0000219

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    McLean SG, Lipfert SW, van den Bogert AJ. Effect of gender and defensive opponent on the biomechanics of sidestep cutting. Med Sci Sports Exerc. 2004;36(6):10081016. PubMed ID: 15179171 doi:10.1249/01.MSS.0000128180.51443.83

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Stephenson ML, Hinshaw TJ, Wadley HA, et al. . Effects of timing of signal indicating jump directions on knee biomechanics in jump-landing-jump tasks. Sports Biomech. 2018;17(1):6782. PubMed ID: 28730871 doi:10.1080/14763141.2017.1346141

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Kristianslund E, Krosshaug T, van den Bogert AJ. Effect of low pass filtering on joint moments from inverse dynamics: implications for injury prevention. J Biomech. 2012;45(4):666671. PubMed ID: 22227316 doi:10.1016/j.jbiomech.2011.12.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Deng HL, Gouveia W, Scales JH. An object-oriented toolbox for studying optimization problems. In: Jacobsen BH, Mosegaard K, Sibani P, eds. Inverse Methods. Springer; 1996:320330. doi:10.1007/BFb0011791

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Fischer R, Milfont TL. Standardization in psychological research. Int J Psychol Res. 2010;3(1):8896. doi:10.21500/20112084.852

  • 41.

    Kreidler SM, Muller KE, Grunwald GK, et al. . GLIMMPSE: online power computation for linear models with and without a baseline covariate. J Stat Softw. 2013;54(10):i10. PubMed ID: 24403868 doi:10.18637/jss.v054.i10

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Ford KR, Myer GD, Smith RL, Byrnes RN, Dopirak SE, Hewett TE. Use of an overhead goal alters vertical jump performance and biomechanics. J Strength Cond Res. 2005;19(2):394399. PubMed ID: 15903381

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Mok KM, Bahr R, Krosshaug T. The effect of overhead target on the lower limb biomechanics during a vertical drop jump test in elite female athletes. Scand J Med Sci Sports. 2017;27(2):161166. PubMed ID: 26688032 doi:10.1111/sms.12640

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Wilke J, Giesche F, Niederer D, et al. . Increased visual distraction can impair landing biomechanics. Biol Sport. 2020;38(1):123127. PubMed ID: 33795921

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Marquez G, Alegre LM, Jaén D, Martin-Casado L, Aguado X. Sex differences in kinetic and neuromuscular control during jumping and landing. J Musculoskelet Neuronal Interact. 2017;17(1):409416. PubMed ID: 28250245

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Louw Q, Grimmer K, Vaughan C. Knee movement patterns of injured and uninjured adolescent basketball players when landing from a jump: a case-control study. BMC Musculoskelet Disord. 2006;7(22):17.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Taylor JB, Ford KR, Schmitz RJ, Ross SE, Ackerman TA, Shultz SJ. Biomechanical differences of multidirectional jump landings among female basketball and soccer players. J Strength Cond Res. 2017;31(11):30343045. PubMed ID: 29065078 doi:10.1519/JSC.0000000000001785

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 248 248 143
Full Text Views 136 136 63
PDF Downloads 112 112 62