Hip Abductor Rate of Torque Development as Opposed to Isometric Strength Predicts Peak Knee Valgus During Landing: Implications for Anterior Cruciate Ligament Injury

in Journal of Applied Biomechanics
View More View Less
  • 1 University of California, Los Angeles
  • | 2 University of Southern California
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

Peak knee valgus has been shown to predict anterior cruciate ligament injury. The purpose of the current study was to compare peak rate of torque development (RTD) to peak isometric torque as a predictor of peak knee valgus during landing. Twenty-three healthy females participated. Hip abductor muscle performance was quantified using 2 types of isometric contractions: sustained and rapid. Peak isometric torque was calculated from the sustained isometric contraction. Peak RTD was calculated from the rapid isometric contraction (0–50 and 0–200 ms after force initiation). Kinematic data were collected during the deceleration phase of a double-leg drop jump task. Linear regression was used to assess the ability of hip abductor muscle performance variables to predict peak knee valgus. Increased peak RTD during the 0 to 50 milliseconds window after force initiation was found to significantly predict lower peak knee valgus (P = .011, R2 = .32). In contrast, neither peak RTD from 0 to 200 milliseconds after force initiation window (P = .45, R2 = .03) nor peak isometric torque (P = .49, R2 = .03) predicted peak knee valgus. The inability of the hip abductors to rapidly generate muscular force may be more indicative of “at-risk” movement behavior in females than measures of maximum strength.

Stearns-Reider is with the Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA. Straub and Powers are with the Division of Biokinesiology & Physical Therapy, University of Southern California, Los Angeles, CA, USA.

Powers (powers@usc.edu) is corresponding author.
  • 1.

    Toth AP, Cordasco FA. Anterior cruciate ligament injuries in the female athlete. J Gend Specif Med. 2001;4(4):2534. PubMed ID: 11727468

  • 2.

    McLean SG, Walker KB, van den Bogert AJ. Effect of gender on lower extremity kinematics during rapid direction changes: an integrated analysis of three sports movements. J Sci Med Sport. 2005;8(4):411422. PubMed ID: 16602169 doi:10.1016/S1440-2440(05)80056-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492501. PubMed ID: 15722287 doi:10.1177/0363546504269591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Paterno MV, Schmitt LC, Ford KR, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):19681978. PubMed ID: 20702858 doi:10.1177/0363546510376053

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Dingenen B, Malfait B, Nijs S, et al. Can two-dimensional video analysis during single-leg drop vertical jumps help identify non-contact knee injury risk? A one-year prospective study. Clin Biomech. 2015;30(8):781787. doi:10.1016/j.clinbiomech.2015.06.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Claiborne TL, Armstrong CW, Gandhi V, Pincivero DM. Relationship between hip and knee strength and knee valgus during a single leg squat. J Appl Biomech. 2006;22(1):4150. PubMed ID: 16760566 doi:10.1123/jab.22.1.41

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hollman JH, Ginos BE, Kozuchowski J, Vaughn AS, Krause DA, Youdas JW. Relationships between knee valgus, hip-muscle strength, and hip-muscle recruitment during a single-limb step-down. J Sport Rehabil. 2009;18(1):104117. PubMed ID: 19321910 doi:10.1123/jsr.18.1.104

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Jacobs CA, Uhl TL, Mattacola CG, Shapiro R, Rayens WS. Hip abductor function and lower extremity landing kinematics: sex differences. J Athl Train. 2007;42(1):7683. PubMed ID: 17597947

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Willson JD, Ireland ML, Davis I. Core strength and lower extremity alignment during single leg squats. Med Sci Sports Exerc. 2006;38(5):945952. PubMed ID: 16672849 doi:10.1249/01.mss.0000218140.05074.fa

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Scattone Silva R, Serrao FV. Sex differences in trunk, pelvis, hip and knee kinematics and eccentric hip torque in adolescents. Clin Biomech. 2014;29(9):10631069. doi:10.1016/j.clinbiomech.2014.08.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Nakagawa TH, Moriya ET, Maciel CD, Serrao FV. Trunk, pelvis, hip, and knee kinematics, hip strength, and gluteal muscle activation during a single-leg squat in males and females with and without patellofemoral pain syndrome. J Orthop Sports Phys Ther. 2012;42(6):491501. doi:10.2519/jospt.2012.3987

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Baldon Rde M, Lobato DF, Carvalho LP, Santiago PR, Benze BG, Serrao FV. Relationship between eccentric hip torque and lower-limb kinematics: gender differences. J Appl Biomech. 2011;27(3):223232. PubMed ID: 21844611

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Suzuki H, Omori G, Uematsu D, Nishino K, Endo N. The influence of hip strength on knee kinematics during a single-legged medial drop landing among competitive collegiate basketball players. Int J Sports Phys Ther. 2015;10(5):592601. PubMed ID: 26491609

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Mizner RL, Kawaguchi JK, Chmielewski TL. Muscle strength in the lower extremity does not predict postinstruction improvements in the landing patterns of female athletes. J Orthop Sports Phys Ther. 2008;38(6):353361. PubMed ID: 18515963 doi:10.2519/jospt.2008.2726

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Thijs Y, Van Tiggelen D, Willems T, De Clercq D, Witvrouw E. Relationship between hip strength and frontal plane posture of the knee during a forward lunge. Br J Sports Med. 2007;41(11):723727. PubMed ID: 17601767 doi:10.1136/bjsm.2007.037374

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Sigward SM, Ota S, Powers CM. Predictors of frontal plane knee excursion during a drop land in young female soccer players. J Orthop Sports Phys Ther. 2008;38(11):661667. PubMed ID: 18978451 doi:10.2519/jospt.2008.2695

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Dix J, Marsh S, Dingenen B, Malliaras P. The relationship between hip muscle strength and dynamic knee valgus in asymptomatic females: a systematic review. Phys Ther Sport. 2019;37:197209. PubMed ID: 29859898 doi:10.1016/j.ptsp.2018.05.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Krosshaug T, Nakamae A, Boden BP, et al. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med. 2007;35(3):359367. PubMed ID: 17092928 doi:10.1177/0363546506293899

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol. 2002;93(4):13181326. doi:10.1152/japplphysiol.00283.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Cronin B, Johnson ST, Chang E, Pollard CD, Norcross MF. Greater hip extension but not hip abduction explosive strength is associated with lesser hip adduction and knee valgus motion during a single-leg jump-cut. Orthop J Sports Med. 2016;4(4):232596711663957. PubMed ID: 27104207 doi:10.1177/2325967116639578

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Hsieh CJ, Indelicato PA, Moser MW, Vandenborne K, Chmielewski TL. Speed, not magnitude, of knee extensor torque production is associated with self-reported knee function early after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2015;23(11):32143220. doi:10.1007/s00167-014-3168-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. 2016;116(6):10911116. PubMed ID: 26941023 doi:10.1007/s00421-016-3346-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Stearns-Reider KM, Powers CM. Rate of torque development and feedforward control of the hip and knee extensors: gender differences. J Mot Behav. 2018;50(3):321329. PubMed ID: 28985154 doi:10.1080/00222895.2017.1363692

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175191. PubMed ID: 17695343 doi:10.3758/BF03193146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Stearns KM, Keim RG, Powers CM. Influence of relative hip and knee extensor muscle strength on landing biomechanics. Med Sci Sports Exerc. 2013;45(5):935941. PubMed ID: 23190597 doi:10.1249/MSS.0b013e31827c0b94

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Stearns KM, Powers CM. Improvements in hip muscle performance result in increased use of the hip extensors and abductors during a landing task. Am J Sports Med. 2014;42(3):602609. PubMed ID: 24464929 doi:10.1177/0363546513518410

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Sahaly R, Vandewalle H, Driss T, Monod H. Maximal voluntary force and rate of force development in humans—importance of instruction. Eur J Appl Physiol. 2001;85(3–4):345350. PubMed ID: 11560090 doi:10.1007/s004210100451

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Khayambashi K, Ghoddosi N, Straub RK, Powers CM. Hip muscle strength predicts noncontact anterior cruciate ligament injury in male and female athletes: a prospective study. Am J Sports Med. 2016;44(2):355361. PubMed ID: 26646514 doi:10.1177/0363546515616237

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Herrington L, Munro A. Drop jump landing knee valgus angle; normative data in a physically active population. Phys Ther Sport. 2010;11(2):5659. PubMed ID: 20381002 doi:10.1016/j.ptsp.2009.11.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Davies G, Riemann BL, Manske R. Current concepts of plyometric exercise. Int J Sports Phys Ther. 2015;10(6):760786. PubMed ID: 26618058

All Time Past Year Past 30 Days
Abstract Views 1076 1076 287
Full Text Views 178 178 3
PDF Downloads 115 115 2