Interjoint Coordination in Kicking a Moving Target: A Comparison Between Elite and Nonelite Taekwondo Players

in Journal of Applied Biomechanics

Click name to view affiliation

Bruno G. StraiottoLondon South Bank University

Search for other papers by Bruno G. Straiotto in
Current site
Google Scholar
PubMed
Close
*
,
David P. CookLondon South Bank University
National Taekwondo Team Norway

Search for other papers by David P. Cook in
Current site
Google Scholar
PubMed
Close
*
,
Darren C. JamesLondon South Bank University

Search for other papers by Darren C. James in
Current site
Google Scholar
PubMed
Close
*
, and
P. John SeeleyLondon South Bank University

Search for other papers by P. John Seeley in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Patterns of interjoint coordination in the kicking legs of taekwondo players were investigated to understand movement pattern variability as a functional property of skill level. Elite and nonelite players performed roundhouse kicks against a custom-built moving target fitted with an accelerometer, and movements were recorded by motion capture. Average foot segment velocities of 13.6 and 11.4 m/s were recorded for elite and nonelite players, respectively (P < .05), corresponding to target accelerations of 87.5 and 70.8g (P < .05). Gradient values derived from piecewise linear regression of continuous relative phase curves established the comparative incoordination of nonelite taekwondo players in the form of an overshoot behavior during the crucial period leading to target impact (P < .05). This overshoot was apparent in both knee–hip and ankle–knee continuous relative phase curves. Elite players generated greater limb speed and impact force through more effective limb segment coordination. The combination of continuous relative phase and piecewise linear regression techniques allowed identification of alternate joint control approaches in the 2 groups.

Straiotto, Cook, James, and Seeley are with the School of Applied Sciences, London South Bank University, London, United Kingdom. Cook is also with the National Taekwondo Team Norway, Oslo, Norway.

Straiotto (brunostraiotto@gmail.com) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Bernstein NA. On dexterity and its development. In: Latash ML, Turvey MT, eds. Dexterity and its Development. Mahwah, New Jersey: Lawrence Erlbaum; 1996:3244.

    • Search Google Scholar
    • Export Citation
  • 2.

    Kurz MJ, Stergiou N. Applied dynamic systems theory for the analysis of movement. In: Stergiou N, ed. Innovative Analyses of Human Movement. Leeds, UK: Human Kinetics; 2004:93119.

    • Search Google Scholar
    • Export Citation
  • 3.

    van Emmerik REA, Wagenaar RC. Effects of walking velocity on relative phase dynamics in the trunk in human walking. J Biomech. 1996;29(9):11751184. PubMed ID: 8872274 doi:10.1016/0021-9290(95)00128-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hamill J, van Emmerik REA, Heiderscheit BC, Li L. A dynamical systems approach to lower extremity running injuries. Clin Biomech. 1999;14(5):297308. doi:10.1016/S0268-0033(98)90092-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Byrne JE, Stergiou N, Blanke D, Houser JJ, Kurz MJ, Hageman PA. Comparison of gait patterns between younger and elderly women: an examination of coordination. Percept Mot Skills. 2002;94(1):265280. PubMed ID: 11883574 doi:10.2466/pms.2002.94.1.265

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Peters BT, Haddad JM, Heiderscheit BC, Van Emmerik REA, Hamill J. Limitations in the use and interpretation of continuous relative phase. J Biomech. 2003;36(2):271274. PubMed ID: 12547366 doi:10.1016/S0021-9290(02)00341-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    MacLean C, van Emmerik REA, Hamill J. Influence of a custom foot orthotic intervention on lower extremity dynamics in healthy runners. Clin Biomech. 2006;21(6):623630. doi:10.1016/j.clinbiomech.2006.01.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Szczęsna A, Błaszczyszyn M, Pawlyta M. Optical motion capture dataset of selected techniques in beginner and advanced Kyokushin karate athletes. Sci Data. 2021;8(1):13. doi:10.1038/s41597-021-00801-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Kim YK, Kim YH, Im SJ. Inter-joint coordination in producing kicking velocity of Taekwondo kicks. J Sport Sci Med. 2011;10(1):3138. doi:10.1016/j.humov.2017.05.005

    • Search Google Scholar
    • Export Citation
  • 10.

    Gavagan CJ, Sayers MGL. A biomechanical analysis of the roundhouse kicking technique of expert practitioners: a comparison between the martial arts disciplines of Muay Thai, Karate, and Taekwondo. PLoS One. 2017;12(8):e0182645. doi:10.1371/journal.pone.0182645

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    O’Sullivan D, Chung C, Lee K, et al. Measurement and comparison of taekwondo and yongmundo turning kick impact force for two target heights. J Sport Sci Med. 2009;8:1013.

    • Search Google Scholar
    • Export Citation
  • 12.

    Lee K-K. The effect of target height on kinematics of round kick in Taekwondo and Hapkido. In: Blackwell JR, Sanders RH, eds. Proceedings of the 19th International Conference on Biomechanics in Sports. San Francisco: International Society of Biomechanics in Sports; 2001:162165.

    • Search Google Scholar
    • Export Citation
  • 13.

    Kwok HHM. Discrepancies in fighting strategies between Taekwondo medalists and non-medalists. J Hum Sport Exerc. 2012;7(4):806814. doi:10.4100/jhse.2012.74.08

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Conkel BS, Braucht J, Wilson W, Pieter W, Taaffe D, Fleck SJ. Isokinetic torque, kick velocity and force in Taekwondo. Med Sci Sport Exerc. 1988;20:S5.

    • Search Google Scholar
    • Export Citation
  • 15.

    Fife G, Pieter W, O’Sullivan D, Cook D, Kaminski T. Effects of olympic style taekwondo kicks on an instrumented head-form and resultant head injury measures. Br J Sport Med. 2011;45(4):318319. doi:10.1136/bjsm.2011.084038.25

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Serina ER, Lieu DK. Thoracic injury potential of basic competition taekwondo kicks. J Biomech. 1991;24(10):951960. PubMed ID: 1744152 doi:10.1016/0021-9290(91)90173-K

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Falco C, Alvarez O, Castillo I, et al. Influence of the distance in a roundhouse kick’s execution time and impact force in Taekwondo. J Biomech. 2009;42(3):242248. PubMed ID: 19124126 doi:10.1016/j.jbiomech.2008.10.041

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Pieter F, Pieter W. Kinematics and kinetics of taekwon-do side kick. Biol Sport. 1995;12(4):257266. doi:10.2478/v10078-011-0068-z

  • 19.

    Estevan I, Freedman Silvernail J, Jandacka D, Falco C. Segment coupling and coordination variability analyses of the roundhouse kick in Taekwondo relative to the initial stance position. J Sports Sci. 2016;34(18):17661773. PubMed ID: 26805571 doi:10.1080/02640414.2015.1137342

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Quinzi F, Sbriccoli P, Alderson J, Di Mario A, Camomilla V. Intra-limb coordination in karate kicking: effect of impacting or not impacting a target. Hum Mov Sci. 2014;33(1):108119. doi:10.1016/j.humov.2013.07.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Lin JFS, Karg M, Kulic D. Movement primitive segmentation for human motion modeling: a framework for analysis. IEEE Trans Hum  Mach Syst. 2016;46(3):325339. doi:10.1109/THMS.2015.2493536

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Buśko K, Staniak Z, Szark-Eckardt M, et al. Measuring the force of punches and kicks among combat sport athletes using a modified punching bag with an embedded accelerometer. Acta Bioeng Biomech. 2016;18(1):4754. PubMed ID: 27149957 doi:10.5277/abb-00304-2015-02

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Collins TD, Ghoussayni SN, Ewins DJ, Kent JA. A six degrees-of-freedom marker set for gait analysis: repeatability and comparison with a modified Helen Hayes set. Gait Posture. 2009;30(2):173180. PubMed ID: 19473844 doi:10.1016/j.gaitpost.2009.04.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Lu TW, O’Connor JJ. Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J Biomech. 1999;32(2):129134. PubMed ID: 10052917 doi:10.1016/S0021-9290(98)00158-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Baker R. Pelvic angles: a mathematically rigorous definition which is consistent with a conventional clinical understanding of the terms. Gait Posture. 2001;13(1):16. PubMed ID: 11166548 doi:10.1016/S0966-6362(00)00083-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Winter DA. The Biomechanics and Motor Control of Human Movement. 2nd ed. New York: Wiley; 1990.

  • 27.

    Li L, Van Den Bogert ECH, Caldwell GE, Van Emmerik REA, Hamill J. Coordination patterns of walking and running at similar speed and stride frequency. Hum Mov Sci. 1999;18(1):6785. doi:10.1016/S0167-9457(98)00034-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Decker L, Houser JJ, Noble JM, Karst GM, Stergiou N. The effects of shoe traction and obstacle height on lower extremity coordination dynamics during walking. Appl Ergon. 2009;40(5):895903. PubMed ID: 19187929 doi:10.1016/j.apergo.2008.12.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Stergiou N, Jensen JL, Bates BT, Scholten SD, Tzetzis G. A dynamical systems investigation of lower extremity coordination during running over obstacles. Clin Biomech. 2001;16(3):213221. doi:10.1016/S0268-0033(00)00090-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Galgon AK, Shewokis PA. Using mean absolute relative phase, deviation phase and point-estimation relative phase to measure postural coordination in a serial reaching task. J Sport Sci Med. 2016;15(1):131141.

    • Search Google Scholar
    • Export Citation
  • 31.

    Bernstein NA. The Co-Regulation of Movements. Oxford: Pergamon Press; 1967.

  • 32.

    Broderick MP, Newell KM. Coordination patterns in ball bouncing as a function of skill. J Mot Behav. 1999;31(2):165188. PubMed ID: 11177629 doi:10.1080/00222899909600986

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Davids K, Araujo D, Hristovski R, Passos P, Chow JY. Ecological dynamics and motor learning design in sport. In: Hodges NJ, Williams AM, eds. Skill Acquisition in Sport: Research, Theory & Practice. 2nd ed. New York, USA: Routledge; 2012:112130.

    • Search Google Scholar
    • Export Citation
  • 34.

    Kiely J. Periodization paradigms in the 21st century: evidence-led or tradition-driven? Int J Sports Physiol Perform. 2012;7(3):242250. PubMed ID: 22356774 doi:10.1123/ijspp.7.3.242

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Woods CT, McKeown I, Rothwell M, Araújo D, Robertson S, Davids K. Sport practitioners as sport ecology designers: how ecological dynamics has progressively changed perceptions of skill “acquisition” in the sporting habitat. Front Psychol. 2020;11:654. PubMed ID: 32390904 doi:10.3389/fpsyg.2020.00654

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Kim J-W, Kwon M-S, Yenuga SS, Kwon Y-H. The effects of target distance on pivot hip, trunk, pelvis, and kicking leg kinematics in Taekwondo roundhouse kicks. Sport Biomech. 2010;9(2):98114. doi:10.1080/14763141003799459

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Preuschl E, Hassmann M, Baca A. A kinematic analysis of the jumping front-leg axe-kick in taekwondo. J Sport Sci Med. 2016;15(1):92101.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3821 3028 226
Full Text Views 37 8 1
PDF Downloads 60 15 1