Overall Greater Demands on the Musculoskeletal System at Multiple Walking Speeds in Service Members With Lower Limb Loss

in Journal of Applied Biomechanics

Click name to view affiliation

Joseph G. WasserWalter Reed National Military Medical Center
Henry M. Jackson Foundation for the Advancement of Military Medicine

Search for other papers by Joseph G. Wasser in
Current site
Google Scholar
PubMed
Close
*
,
Julian C. AcasioWalter Reed National Military Medical Center
Henry M. Jackson Foundation for the Advancement of Military Medicine

Search for other papers by Julian C. Acasio in
Current site
Google Scholar
PubMed
Close
*
,
Ross H. MillerUniversity of Maryland

Search for other papers by Ross H. Miller in
Current site
Google Scholar
PubMed
Close
*
, and
Brad D. HendershotWalter Reed National Military Medical Center
DoD-VA Extremity Trauma & Amputation Center of Excellence
Uniformed Services University of the Health Sciences

Search for other papers by Brad D. Hendershot in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Individuals with lower limb loss often walk with altered/asymmetric movement mechanics, postulated as a catalyst for development of low back and knee pain. Here, the authors simultaneously investigated trunk-pelvic movement patterns and lower limb joint kinematics and kinetics among 38 males with traumatic, unilateral lower limb loss (23 transtibial and 15 transfemoral), and 15 males without limb loss, at a self-selected and 2 standardized (1.0 and 1.6 m/s) speeds. Individuals with versus without lower limb loss walked with greater trunk range of motion in the frontal and transverse planes at all speeds (despite ∼10% slower self-selected speeds). At all speeds, individuals with versus without limb loss exhibited +29% larger medial ground reaction forces, and at 1.6 m/s also exhibited +50% to 110% larger vertical hip power generation, +27% to 80% larger vertical hip power absorption, and +21% to 90% larger medial–lateral hip power absorption. Moreover, pervasive biomechanical differences between transtibial versus transfemoral limb loss identify amputation-level movement strategies. Overall, greater demands on the musculoskeletal system across walking speeds, particularly at the hip, knee, and low back, highlight potential risk factors for the development/recurrence of prevalent secondary musculoskeletal conditions (eg, joint degeneration and pain) following limb loss.

Wasser, Acasio, and Hendershot are with the Research and Development Section, Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA. Wasser and Acasio are also with the Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA. Miller is with the Department of Kinesiology, University of Maryland, College Park, MD, USA. Hendershot is also with the Research & Surveillance Division, DoD-VA Extremity Trauma & Amputation Center of Excellence, Bethesda, MD, USA; and the Department of Rehabilitation Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.

Hendershot (bradford.d.hendershot2.civ@mail.mil) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. 2008;89(3):422429. PubMed ID: 18295618 doi:10.1016/j.apmr.2007.11.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Limb Loss Task Force/Amputee Coalition of America. Roadmap for Improving Patient-Centered Outcomes Research and Advocacy. Knoxville, TN: ACA; 2019. (Available at amputee-coalition.org.)

    • Search Google Scholar
    • Export Citation
  • 3.

    Farrokhi S, Perez K, Eskridge S, Clouser M. Major deployment-related amputations of lower and upper limbs, active and reserve components, U.S. Armed Forces, 2001-2017. MSMR. 2018;25(7):1016. PubMed ID: 30047274

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hak L, van Dieën JH, van der Wurff P, Houdijk H. Stepping asymmetry among individuals with unilateral transtibial limb loss might be functional in terms of gait stability. Phys Ther. 2014;94(10):14801488. PubMed ID: 24903115 doi:10.2522/ptj.20130431

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Mahon CE, Pruziner AL, Hendershot BD, et al. Gait and functional outcomes for young, active males with traumatic unilateral transfemoral limb loss. Mil Med. 2017;182(7):e1913e1923. PubMed ID: 28810990 doi:10.7205/MILMED-D-16-00356

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Roerdink M, Roeles S, van der Pas SCH, Bosboom O, Beek PJ. Evaluating asymmetry in prosthetic gait with step-length asymmetry alone is flawed. Gait Posture. 2012;35(3):446451. PubMed ID: 22153771 doi:10.1016/j.gaitpost.2011.11.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Gailey R, Allen K, Castles J, Kucharik J, Roeder M. Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use. J Rehabil Res Dev. 2008;45(1):1530. PubMed ID: 18566923 doi:10.1682/JRRD.2006.11.0147

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Struyf PA, van Heugten CM, Hitters MW, Smeets RJ. The prevalence of osteoarthritis of the intact hip and knee among traumatic leg amputees. Arch Phys Med Rehabil. 2009;90(3):440446. PubMed ID: 19254609 doi:10.1016/j.apmr.2008.08.220

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Asano M, Rushton P, Miller WC, Deathe BA. Predictors of quality of life among individuals who have a lower limb amputation. Prosthet Orthot Int. 2008;32(2):231243. PubMed ID: 18569891 doi:10.1080/03093640802024955

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Kulkarni J, Gaine WJ, Buckley JG, Rankine JJ, Adams J. Chronic low back pain in traumatic lower limb amputees. Clin Rehabil. 2005;19(1):8186. PubMed ID: 15704512 doi:10.1191/0269215505cr819oa

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Norvell DC, Czerniecki JM, Reiber GE, Maynard C, Pecoraro JA, Weiss NS. The prevalence of knee pain and symptomatic knee osteoarthritis among veteran traumatic amputees and nonamputees. Arch Phys Med Rehabil. 2005;86(3):487493. PubMed ID: 15759233 doi:10.1016/j.apmr.2004.04.034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Waters RL, Mulroy S. The energy expenditure of normal and pathologic gait. Gait Posture. 1999;9(3):207231. PubMed ID: 10575082 doi:10.1016/S0966-6362(99)00009-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hendershot BD, Nussbaum MA. Persons with lower-limb amputation have impaired trunk postural control while maintaining seated balance. Gait Posture. 2013;38(3):438442. PubMed ID: 23391751 doi:10.1016/j.gaitpost.2013.01.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Smith DG, Ehde DM, Legro MW, Reiber GE, del Aguila M, Boone DA. Phantom limb, residual limb, and back pain after lower extremity amputations. Clin Orthop. 1999;361:2938. doi:10.1097/00003086-199904000-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Russell Esposito E, Wilken JM. The relationship between pelvis-trunk coordination and low back pain in individuals with transfemoral amputations. Gait Posture. 2014;40(4):640646. PubMed ID: 25155692 doi:10.1016/j.gaitpost.2014.07.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Chapman JR, Norvell DC, Hermsmeyer JT, et al. Evaluating common outcomes for measuring treatment success for chronic low back pain. Spine. 2011;36:S54S68. PubMed ID: 21952190 doi:10.1097/BRS.0b013e31822ef74d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Nolan L, Wit A, Dudziñski K, Lees A, Lake M, Wychowañski M. Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait Posture. 2003;17(2):142151. PubMed ID: 12633775 doi:10.1016/S0966-6362(02)00066-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Rutkowska-Kucharska A, Kowal M, Winiarski S. Relationship between asymmetry of gait and muscle torque in patients after unilateral transfemoral amputation. Appl Bionics Biomech. 2018;2018:5190816. PubMed ID: 29755583 doi:10.1155/2018/5190816

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Amin S, Luepongsak N, McGibbon CA, LaValley MP, Krebs DE, Felson DT. Knee adduction moment and development of chronic knee pain in elders. Arthritis Rheum. 2004;51(3):371376. PubMed ID: 15188321 doi:10.1002/art.20396

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Lynn SK, Reid SM, Costigan PA. The influence of gait pattern on signs of knee osteoarthritis in older adults over a 5-11 year follow-up period: a case study analysis. Knee. 2007;14(1):2228. PubMed ID: 17092727 doi:10.1016/j.knee.2006.09.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Morgenroth DC, Medverd JR, Seyedali M, Czerniecki JM. The relationship between knee joint loading rate during walking and degenerative changes on magnetic resonance imaging. Clin Biomech Bristol Avon. 2014;29(6):664670. doi:10.1016/j.clinbiomech.2014.04.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Mündermann A, Asay JL, Mündermann L, Andriacchi TP. Implications of increased medio-lateral trunk sway for ambulatory mechanics. J Biomech. 2008;41(1):165170. PubMed ID: 17678933 doi:10.1016/j.jbiomech.2007.07.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Molina Rueda F, Alguacil Diego IM, Molero Sánchez A, Carratalá Tejada M, Rivas Montero FM, Miangolarra Page JC. Knee and hip internal moments and upper-body kinematics in the frontal plane in unilateral transtibial amputees. Gait Posture. 2013;37(3):436439. PubMed ID: 23021254 doi:10.1016/j.gaitpost.2012.08.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Clemens S, Kim KJ, Gailey R, Kirk-Sanchez N, Kristal A, Gaunaurd I. Inertial sensor-based measures of gait symmetry and repeatability in people with unilateral lower limb amputation. Clin Biomech. 2020;72:102107. doi:10.1016/j.clinbiomech.2019.12.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Butowicz CM, Krupenevich RL, Acasio JC, Dearth CL, Hendershot BD. Relationships between mediolateral trunk-pelvic motion, hip strength, and knee joint moments during gait among persons with lower limb amputation. Clin Biomech. 2020;71:160166. doi:10.1016/j.clinbiomech.2019.11.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Hendershot BD, Wolf EJ. Mediolateral joint powers at the low back among persons with unilateral transfemoral amputation. Arch Phys Med Rehabil. 2015;96(1):154157. PubMed ID: 25102386 doi:10.1016/j.apmr.2014.07.402

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Callaghan JP, Patla AE, McGill SM. Low back three-dimensional joint forces, kinematics, and kinetics during walking. Clin Biomech. 1999;14(3):203216. doi:10.1016/S0268-0033(98)00069-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Cheng CK, Chen HH, Chen CS, Lee SJ. Influences of walking speed change on the lumbosacral joint force distribution. Biomed Mater Eng. 1998;8(3–4):155165. PubMed ID: 10065882

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hendershot BD, Shojaei I, Acasio JC, Dearth CL, Bazrgari B. Walking speed differentially alters spinal loads in persons with traumatic lower limb amputation. J Biomech. 2018;70:249254. PubMed ID: 29217090 doi:10.1016/j.jbiomech.2017.11.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Wasser JG, Vincent KR, Herman DC, Vincent HK. Potential lower extremity amputation-induced mechanisms of chronic low back pain: role for focused resistance exercise. Disabil Rehabil. 2019;42(25):37133721. PubMed ID: 31067145 doi:10.1080/09638288.2019.1610507

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Sherk VD, Bemben MG, Bemben DA. Interlimb muscle and fat comparisons in persons with lower-limb amputation. Arch Phys Med Rehabil. 2010;91(7):10771081. PubMed ID: 20599046 doi:10.1016/j.apmr.2010.04.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Jaegers SM, Arendzen JH, de Jongh HJ. Changes in hip muscles after above-knee amputation. Clin Orthop. 1995;319:276284.

  • 33.

    Silverman AK, Neptune RR. Differences in whole-body angular momentum between below-knee amputees and non-amputees across walking speeds. J Biomech. 2011;44(3):379385. PubMed ID: 21074161 doi:10.1016/j.jbiomech.2010.10.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Silverman AK, Fey NP, Portillo A, Walden JG, Bosker G, Neptune RR. Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds. Gait Posture. 2008;28(4):602609. PubMed ID: 18514526 doi:10.1016/j.gaitpost.2008.04.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Jarvis HL, Reeves ND, Twiste M, Phillip RD, Etherington J, Bennett AN. Can high-functioning amputees with state-of-the-art prosthetics walk normally? A kinematic and dynamic study of 40 individuals. Ann Phys Rehabil Med. 2021;64(1):101395. PubMed ID: 32450271 doi:10.1016/j.rehab.2020.04.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Schuett DJ, Wyatt MP, Kingsbury T, Thesing N, Dromsky DM, Kuhn KM. Are gait parameters for through-knee amputees different from matched transfemoral amputees? Clin Orthop. 2019;477(4):821825. PubMed ID: 30811368 doi:10.1007/s11999.0000000000000212

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Winter D. Biomechanics & Motor Control of Human Movement 2nd Edition. 2009. https://www.powells.com/book/biomechanics-motor-control-of-human-movement-2nd-edition-9780471509080. Accessed February 8, 2021.

    • Search Google Scholar
    • Export Citation
  • 38.

    Zeni JA, Richards JG, Higginson JS. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture. 2008;27(4):710714. PubMed ID: 17723303 doi:10.1016/j.gaitpost.2007.07.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: L. Erlbaum Associates; 1988.

  • 40.

    Michaud SB, Gard SA, Childress DS. A preliminary investigation of pelvic obliquity patterns during gait in persons with transtibial and transfemoral amputation. J Rehabil Res Dev. 2000;37(1):110. PubMed ID: 10847567

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    van den Hoorn W, Bruijn SM, Meijer OG, Hodges PW, van Dieën JH. Mechanical coupling between transverse plane pelvis and thorax rotations during gait is higher in people with low back pain. J Biomech. 2012;45(2):342347. PubMed ID: 22078275 doi:10.1016/j.jbiomech.2011.10.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Segal AD, Klute GK. Lower-limb amputee recovery response to an imposed error in mediolateral foot placement. J Biomech. 2014;47(12):29112918. PubMed ID: 25145315 doi:10.1016/j.jbiomech.2014.07.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Ding Z, Jarvis HL, Bennett AN, Baker R, Bull AMJ. Higher knee contact forces might underlie increased osteoarthritis rates in high functioning amputees: a pilot study. J Orthop Res. 2020;39(4):850860. PubMed ID: 32427347 doi:10.1002/jor.24751

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Nolan L, Lees A. The functional demands on the intact limb during walking for active trans-femoral and trans-tibial amputees. Prosthet Orthot Int. 2000;24(2):117125. PubMed ID: 11061198 doi:10.1080/03093640008726534

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Teng H-L, Calixto N, Link TM, Majumdar S, Souza RB. Knee flexion moment and impulse during walking are associated with patellofemoral joint articular cartilage T1RHO and T2 relaxation time. Osteoarthritis Cartilage. 2015;23:A75A76. doi:10.1016/j.joca.2015.02.153

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Chehab EF, Favre J, Erhart-Hledik JC, Andriacchi TP. Baseline knee adduction and flexion moments during walking are both associated with 5 year cartilage changes in patients with medial knee osteoarthritis. Osteoarthritis Cartilage. 2014;22(11):18331839. PubMed ID: 25211281 doi:10.1016/j.joca.2014.08.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Chang AH, Moisio KC, Chmiel JS, et al. External knee adduction and flexion moments during gait and medial tibiofemoral disease progression in knee osteoarthritis. Osteoarthritis Cartilage. 2015;23(7):10991106. PubMed ID: 25677110 doi:10.1016/j.joca.2015.02.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Hall M, Wrigley TV, Metcalf BR, et al. Do Moments and strength predict cartilage changes after partial meniscectomy? Med Sci Sports Exerc. 2015;47(8):15491556. PubMed ID: 25397607 doi:10.1249/MSS.0000000000000575

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Gates DH, Dingwell JB, Scott SJ, Sinitski EH, Wilken JM. Gait characteristics of individuals with transtibial amputations walking on a destabilizing rock surface. Gait Posture. 2012;36(1):3339. PubMed ID: 22469772 doi:10.1016/j.gaitpost.2011.12.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Barrios JA, Crossley KM, Davis IS. Gait retraining to reduce the knee adduction moment through real-time visual feedback of dynamic knee alignment. J Biomech. 2010;43(11):22082213. PubMed ID: 20452595 doi:10.1016/j.jbiomech.2010.03.040

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3222 2798 199
Full Text Views 30 23 0
PDF Downloads 47 38 3