Regulating Movement Frequency and Speed: Implications for Lumbar Spine Load Management Strategies Demonstrated Using an In Vitro Porcine Model

in Journal of Applied Biomechanics

Click name to view affiliation

Jackie D. ZehrUniversity of Waterloo

Search for other papers by Jackie D. Zehr in
Current site
Google Scholar
PubMed
Close
*
,
Jessa M. Buchman-PearleUniversity of Waterloo

Search for other papers by Jessa M. Buchman-Pearle in
Current site
Google Scholar
PubMed
Close
*
,
Tyson A.C. BeachUniversity of Waterloo

Search for other papers by Tyson A.C. Beach in
Current site
Google Scholar
PubMed
Close
*
,
Chad E. GooyersUniversity of Waterloo
-30- Forensic Engineering

Search for other papers by Chad E. Gooyers in
Current site
Google Scholar
PubMed
Close
*
, and
Jack P. CallaghanUniversity of Waterloo

Search for other papers by Jack P. Callaghan in
Current site
Google Scholar
PubMed
Close
*
Restricted access

The relationship between internal loading dose and low-back injury risk during lifting is well known. However, the implications of movement parameters that influence joint loading rates—movement frequency and speed—on time-dependent spine loading responses remain less documented. This study quantified the effect of loading rate and frequency on the tolerated cumulative loading dose and its relation to joint lifespan. Thirty-two porcine spinal units were exposed to biofidelic compression loading paradigms that differed by joint compression rate (4.2 and 8.3 kN/s) and frequency (30 and 60 cycles per minute). Cyclic compression testing was applied until failure was detected or 10,800 continuous cycles were tolerated. Instantaneous weighting factors were calculated to evaluate the cumulative load and Kaplan–Meier survival probability functions were examined following nonlinear dose normalization of the cyclic lifespan. Significant reductions in cumulative compression were tolerated when spinal units were compressed at 8.3 kN/s (P < .001, 67%) and when loaded at 30 cycles per minute (P = .008, 45%). There was a positive moderate relationship between cumulative load tolerance and normalized cyclic lifespan (R2 = .52), which was supported by joint survivorship functions. The frequency and speed of movement execution should be evaluated in parallel to loading dose for the management of low-back training exposures.

Zehr, Buchman-Pearle, Beach, Gooyers, and Callaghan are with the Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada. Gooyers is also with the Biomechanics Group, -30- Forensic Engineering, Vancouver, BC, Canada.

Callaghan (jack.callaghan@uwaterloo.ca) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Smith MM, Sommer AJ, Starkoff BE, Devor ST. Cross-fit based high-intentsity power training improved maximal aerobic fitness and body composition. J Strength Cond Res. 2013;27(11):31593172. PubMed ID: 23439334 doi:10.1519/JSC.0b013e318289e59f

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Gabbett TJ. The training-injury prevention paradox: should athletes be training smarter or harder? Br J Sports Med. 2016;50(5):273280. PubMed ID: 26758673 doi:10.1136/bjsports-2015-095788

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Schoenfeld BJ, Contreras B, Krieger J, et al. Resistance training volume enhances muscle hypertrophy but not strength in trained men. Med Sci Sports Exercise. 2019;51(1):94103. PubMed ID: 30153194 doi:10.1249/MSS.0000000000001764

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Mangine GT, Hoffman JR, Gonzalez AM, et al. Resistance training intensity and volume affect changes in rate of force development in resistance-trained men. Eur J Appl Physiol. 2016;116(11–12):23672374. doi:10.1007/s00421-016-3488-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Vanrenterghem J, Nedegaard NJ, Robinson MA, Drust B. Training load monitoring in team sports: a novel framework separating physiological and biomechanical load-adaptation pathways. Sports Med. 2017;47(11):21352142. PubMed ID: 28283992 doi:10.1007/s40279-017-0714-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hopkins BS, Cloney MB, Kesavabhotla K, et al. Impact of CrossFit-related spinal injuries. Clin J Sport Med. 2019;29(6):482485. PubMed ID: 31688179

  • 7.

    Klimek C, Ashbeck C, Brook AJ, Durall C. Are injuries more common with CrossFit training than other forms of exercise. J Sport Rehabil. 2018;27(3):295299. PubMed ID: 28253059 doi:10.1123/jsr.2016-0040

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Feito Y, Burrows EK, Tabb LP. A 4-year analysis of the incidence of injuries among crossfit-trained participants. Orthop J Sports Med. 2018;6(10):232596711880310. doi:10.1177/2325967118803100

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Gooyers CE, Beach TAC, Frost DM, Howarth SJ, Callaghan JP. Identifying interactive effect of task demands in lifting on estimates of in vivo low back joint loads. Appl Ergon. 2018;67:203210. PubMed ID: 29122191 doi:10.1016/j.apergo.2017.10.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Sjöberg H, Aasa U, Rosengren M, Bergland L. Content validity index and reliability of a new protocol for evaluation of lifting technique in the powerlifting squat and deadlift. J Strength Cond Res. 2020;34(9):25282536. PubMed ID: 30199449 doi:10.1519/JSC.0000000000002791

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gooyers CE, McMillan EM, Noguchi M, Quadrilatero J, Callaghan JP. Characterizing the combined effects of force, repetition and posture on injury pathways and micro-structural damage in isolated functional spinal units from sub-acute-failure magnitudes of cyclic compressive loading. Clin Biomech. 2015;30(9):953959. PubMed ID: 26209903 doi:10.1016/j.clinbiomech.2015.07.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Zehr JD, Tennant LM, Callaghan JP. Examining endplate fatigue failure during cyclic compression loading with variable and consistent peak magnitudes using a force weighting adjustment approach: an in vitro study. Erognomics. 2019;62(10):13391348. doi:10.1080/00140139.2019.1648879

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Yingling VR, Callaghan JP, McGill SM. The porcine cervical spine as a model of the human lumbar spine: an anatomical, geometric, and functional comparison. J Spinal Disord Tech. 1999;12(5):415423. PubMed ID: 10549707 doi:10.1097/00002517-199912050-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Busscher I, van der Beek AJ, van Dieën JH, Kingma I, Verkerke GJ, Veldhuizen AG. In vitro biomechanical characteristics of the spine: a comparison between human and porcine spinal segments. Spine. 2010;35(2):E35E42. doi:10.1097/BRS.0b013e3181b21885

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Geniady AM, Waly SM, Khalil TM, Hidalgo J. Spinal compression tolerance limits for the design of manual material handling operations in the workplace. Ergonomics. 1993;36(4):415434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Gunning JL, Callaghan JP, McGill SM. Spinal posture and prior loading history modulate compressive strength and type of failure in the spine: a biomechanical study using a cervical porcine model. Clin Biomech. 2001;16(6):471480. PubMed ID: 11427289 doi:10.1016/S0268-0033(01)00032-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Hansson TH, Keller TS, Spengler DM. Mechanical behavior of the human lumbar spine II. Fatigue strength during dynamic compressive loading. J Orthop Res. 1987;5(4):479487. PubMed ID: 3681522 doi:10.1002/jor.1100050403

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Galante JO. Tensile Properties of the human annulus fibrosus. Acta Orthop Scand Suppl. 1967;100:191.

  • 19.

    Callaghan JP, McGill SM. Frozen storage increases the ultimate compressive load of porcine vertebrae. J Orthop Res. 1995;13(5):809812. PubMed ID: 7472761 doi:10.1002/jor.1100130522

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Parkinson RJ, Durkin JL, Callaghan JP. Estimating the compressive strength of the porcine cervical spine: an examination of the utility of DXA. Spine. 2005;30(17):E492E498. PubMed ID: 16135971 doi:10.1097/01.brs.0000176246.54774.54

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Caler WE, Carter DR. Bone creep-fatigue damage accumulation. J Biomech. 1989;22(6–7):625635. PubMed ID: 2808445 doi:10.1016/0021-9290(89)90013-4

  • 22.

    Parkinson RJ, Callaghan JP. The role of load magnitude as a modifier of the cumulative load tolerance of porcine cervical spinal units: progress towards a force weighting approach. Theor Issues Ergon Sci. 2007;8(3):171184. doi:10.1080/14639220500093160

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Beach TAC, Coke SK, Callaghan JP. Upper body kinematic and low-back kinetic responses to precision placement challenges and cognitive distractions during repetitive lifting. Int J Ind Ergon. 2006;36(7):637650. doi:10.1016/j.ergon.2006.04.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Cholewicki J, McGill SM, Norman GR. Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: towards development of a hybrid approach. J Biomech. 1995;28(3):321331. PubMed ID: 7730390 doi:10.1016/0021-9290(94)00065-C

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    McGill SM, Norman RW. Partitioning of the L4-L5 dynamic moment into disc, ligamentous, and muscular components during lifting. Spine. 1986;11(7):666678. PubMed ID: 3787338 doi:10.1097/00007632-198609000-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Parkinson RJ, Callaghan JP. Can periods of static loading be used to enhance the resistance of the spine to cumulative compression? J Biomech. 2007;40(13):29442952. PubMed ID: 17408674 doi:10.1016/j.jbiomech.2007.02.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Brinckmann P, Biggemann M, Hilweg D. Fatigue failure of human lumbar vertebrae. Clin Biomech. 1988;3:S1S23. doi:10.1016/S0268-0033(88)80001-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Gooyers CE, Callaghan JP. Exploring interactions between force, repetition and posture on intervertebral disc height loss and bulging in isolated porcine cervical functional spinal units from sub-acute-failure magnitudes of cyclic compressive loading. J Biomech. 2015;48(13):37013708. PubMed ID: 26343389 doi:10.1016/j.jbiomech.2015.08.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Zehr JD, Tennant LM, Callaghan JP. Incorporating loading variability into in vitro injury analyses and its effect on cumulative compression tolerance in porcine cervical spine units. J Biomech. 2019;88:4854. PubMed ID: 30904332 doi:10.1016/j.jbiomech.2019.03.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Panjabi MM. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord. 1992;5(4):383389. PubMed ID: 1490034 doi:10.1097/00002517-199212000-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Parkinson RJ, Callaghan JP. The role of dynamic flexion in spine injury is altered by increasing dynamic load magnitude. Clin Biomech. 2009;24(2):148154. PubMed ID: 19121880 doi:10.1016/j.clinbiomech.2008.11.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Jackman TM, Hussein AI, Adams AM, Makhnejia KK, Morgan EF. Endplate deflection is a defining feature of vertebral fracture and is associated with properties of the underlying trabecular bone. J Orthop Res. 2014;32(7):880886. PubMed ID: 24700382 doi:10.1002/jor.22620

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Zehr JD, Buchman-Pearle JM, Callaghan JP. Joint fatigue-failure: a demonstration of viscoelastic responses to rate and frequency loading parameters using the porcine cervical spine. J Biomech. 2020;113:110081. PubMed ID: 33217697 doi:10.1016/j.jbiomech.2020.110081

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53(282):457481. doi:10.1080/01621459.1958.10501452

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Zioupos P, Curr JD, Casinos A. Tensile fatigue in bone: are cycles-, or time to failure, or both, more important? J Theor Biol. 2001;210(3):389399. PubMed ID: 11397140 doi:10.1006/jtbi.2001.2316

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Fields AJ, Rodriguez D, Gary KN, Liebenberg EC, Lotz JC. Influence of biochemical composition on endplate cartilage tensile properties in the human lumbar spine. J Orthop Res. 2013;32(2):245252. PubMed ID: 24273192 doi:10.1002/jor.22516

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Brown SHM, Gregory DE, McGill SM. Vertebral end-plate fractures as a result of high rate pressure loading in the nucleus of the young adult porcine spine. J Biomech. 2008;41(1):122127. PubMed ID: 17706227 doi:10.1016/j.jbiomech.2007.07.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Riches PE, Dhillon N, Lotz J, Woods AW, McNally DS. The internal mechanics of the intervertebral disc under cyclic loading. J Biomech. 2002;35(9):12631271. PubMed ID: 12163315 doi:10.1016/S0021-9290(02)00070-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Giers MB, Munter BT, Eyster KJ, et al. Biomechanical and endplate effects on nutrient transport in the intervertebral disc. World Neurosurg. 2017;99:395402. PubMed ID: 28012886 doi:10.1016/j.wneu.2016.12.041

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Jackman TM, Hussein AI, Curtiss C, et al. Quantitative, 3D visualization of the initiation and progression of vertebral fractures under compression and anterior flexion. J Bone Miner Res. 2016;31(4):777788. PubMed ID: 26590372 doi:10.1002/jbmr.2749

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Coenen P, Kingma I, Boot CRL, Twisk JWR, Bongers PM, van Dieën JH. Cumulative low back load at work as a risk factor of low back pain: a prospective cohort study. J Occup Rehabil. 2013;23(1):1118. doi:10.1007/s10926-012-9375-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Troup JDG, Martin JW, Lloyd DCEF. Back pain in industry: a prospective study. Spine. 1977;6(1):6169. doi:10.1097/00007632-198101000-00014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Englemark VE. Functionally induced changes in articular cartilage. In Gaynor F (ed.), Biomechanical Studies of the Musculoskeletal System. Charles C Thomas; 1961.

    • Search Google Scholar
    • Export Citation
  • 44.

    Jin M, Frank EH, Quinn TM, Hunziker EB, Grodzinsky AJ. Tissue shear deformation stimulates proteoglycan and protein biosynthesis in bovine cartilage explants. Arch Biochem Biophys. 2001;395(1):4148. PubMed ID: 11673864 doi:10.1006/abbi.2001.2543

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Aasa U, Bengtsson V, Bergland L, Öhberg F. Variability of lumbar spinal alignment among power- and weightlifters during the deadlift and barbell back squat. Sports Biomechanicsa. 2019;13:117.

    • Search Google Scholar
    • Export Citation
  • 46.

    Callaghan JP, McGill SM. Intervertebral disc herniation: studies on a porcine model exposed to highly repetitive flexion/extension motion with compressive force. Clin Biomech. 2001;16(1):2837. PubMed ID: 11114441 doi:10.1016/S0268-0033(00)00063-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Adams MA, Hutton WC. The effect of posture on the role of apophysical joint in resisting intervertebral compressive forces. J Bone Joint Surg. 1980;62(3):358362. doi:10.1302/0301-620X.62B3.6447702

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3305 2925 193
Full Text Views 575 20 2
PDF Downloads 207 19 2