Stretch-Shortening Cycle Performance and Muscle–Tendon Properties in Dancers and Runners

in Journal of Applied Biomechanics

Click name to view affiliation

Paige E. RiceEdith Cowan University
Northern Arizona University

Search for other papers by Paige E. Rice in
Current site
Google Scholar
PubMed
Close
*
,
Kiisa NishikawaNorthern Arizona University

Search for other papers by Kiisa Nishikawa in
Current site
Google Scholar
PubMed
Close
*
,
Kevin A. ZwetslootAppalachian State University

Search for other papers by Kevin A. Zwetsloot in
Current site
Google Scholar
PubMed
Close
*
,
Amelia S. BruceAppalachian State University

Search for other papers by Amelia S. Bruce in
Current site
Google Scholar
PubMed
Close
*
,
Caroline D. GuthrieAppalachian State University

Search for other papers by Caroline D. Guthrie in
Current site
Google Scholar
PubMed
Close
*
, and
Sophia NimphiusEdith Cowan University
Auckland University of Technology

Search for other papers by Sophia Nimphius in
Current site
Google Scholar
PubMed
Close
*
Restricted access

The purpose of this investigation was to elucidate whether ankle joint stretch-shortening cycle performance, isometric and isokinetic plantarflexion strength, and maximal Achilles tendon force and elongation differ between dancers, endurance runners, and untrained controls. To differentiate between dancers, endurance runners, and controls, the authors measured maximal Achilles tendon force and elongation during isometric ramp contractions with ultrasonic imaging, maximal isometric and isokinetic plantarflexion strength with dynamometry, and stretch-shortening cycle function during countermovement hopping and 30-cm drop hopping with a custom-designed sled. The Achilles tendon of dancers elongated significantly (P ≤ .05) more than runners and controls. Dancers were significantly stronger than controls during isometric contractions at different ankle angles. Concentric and eccentric strength during isokinetic contractions at 60°·s−1 and 120°·s−1 was significantly higher in dancers and runners than controls. Dancers hopped significantly higher than runners and controls during hopping tasks. Dancers also possessed significantly greater countermovement hop relative peak power, drop hop relative impulse, and drop hop relative peak power than controls. Finally, dancers reached significantly greater velocities during countermovement hops than runners and controls. Our findings suggest dancing and running require or likely enhance plantarflexion strength. Furthermore, dancing appears to require and enhance ankle joint stretch-shortening cycle performance and tendon elongation.

Rice and Nimphius are with the School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia. Rice and Nishikawa are with the Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA. Zwetsloot, Bruce, and Guthrie are with the Department of Health and Exercise Science, Appalachian State University, Boone, NC, USA. Nimphius is also with the Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand.

Rice (p.rice@ecu.edu.au) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Imura A, Iino Y. Comparison of lower limb kinetics during vertical jumps in turnout and neutral foot positions by classical ballet dancers. Sports Biomech. 2017;16(1):87101. PubMed ID: 27418231 doi:10.1080/14763141.2016.1205122

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Jarvis DN, Kulig K. Lower extremity biomechanical demands during saut de chat leaps. Med Probl Perform Art. 2016;31(4):211217. PubMed ID: 27942700 doi:10.21091/mppa.2016.4039

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Ravn S, Voigt M, Simonsen EB, Alkjaer T, Bojsen-Moller F, Klausen K. Choice of jumping strategy in two standard jumps, squat and countermovement jump—effect of training background or inherited preference? Scand J Med Sci Sports. 1999;9(4):201208. PubMed ID: 10407927 doi:10.1111/j.1600-0838.1999.tb00234.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Stefanyshyn DJ, Nigg BM. Mechanical energy contribution of the metatarsophalangeal joint to running and sprinting. J Biomech. 1997;30(11–12):10811085. PubMed ID: 9456374 doi:10.1016/S0021-9290(97)00081-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Kirby TJ, McBride JM, Haines TL, Dayne AM. Relative net vertical impulse determines jumping performance. J Appl Biomech. 2011;27(3):207214. PubMed ID: 21844609 doi:10.1123/jab.27.3.207

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Rice PE, Goodman CL, Capps CR, Triplett NT, Erickson TM, McBride JM. Force- and power-time curve comparison during jumping between strength-matched male and female basketball players. Eur J Sport Sci. 2017;17(3):286293. PubMed ID: 27691454 doi:10.1080/17461391.2016.1236840

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Komi PV. Physiological and biomechanical correlates of muscle function: effects of muscle structure and stretch-shortening cycle on force and speed. Exerc Sport Sci Rev. 1984;12(1):81121. PubMed ID: 6376140 doi:10.1249/00003677-198401000-00006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Paavolainen L, Hakkinen K, Hamalainen I, Nummela A, Rusko H. Explosive-strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol. 1999;86(5):15271533. doi:10.1152/jappl.1999.86.5.1527

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Rice PE, Nishikawa K, Nimphius S. Strength and power capabilities predict weighted parameter ranking of saut de chat leaping performance in dancers. Sports Biomech. 2021:117. doi:10.1080/14763141.2021.1933580

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Frasson VB, Rassier DE, Herzog W, Vaz MA. Dorsiflexor and plantarflexor torque-angle and torque-velocity relationships of classical ballet dancers and volleyball players. Braz J Biomech. 2008;8(14):3137.

    • Search Google Scholar
    • Export Citation
  • 11.

    Moltubakk MM, Magulas MM, Villars FO, Seynnes OR, Bojsen-Moller J. Specialized properties of the triceps surae muscle-tendon unit in professional ballet dancers. Scand J Med Sci Sports. 2018;28(9):20232034. PubMed ID: 29723911 doi:10.1111/sms.13207

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Rice PE, van Werkhoven H, Dejournette DJ, Gurchiek RD, Mackall JW, McBride JM. A comparison of musculo-articular stiffness and maximal isometric plantar flexion and knee extension force in dancers and untrained individuals. J Dance Med Sci. 2017;21(4):144150. PubMed ID: 29166984 doi:10.12678/1089-313X.21.4.144

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Rice PE, van Werkhoven H, Merritt EK, McBride JM. Lower leg morphology and stretch-shortening cycle performance of dancers. J Appl Biomech. 2018;34(3):211219. PubMed ID: 29364043 doi:10.1123/jab.2017-0206

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Stefanyshyn DJ, Nigg BM. Dynamic angular stiffness of the ankle joint during running and sprinting. J Appl Biomech. 1998;14(3):292299. PubMed ID: 28121249 doi:10.1123/jab.14.3.292

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Karamanidis K, Arampatzis A. Mechanical and morphological properties of different muscle-tendon units in the lower extremity and running mechanics: effect of aging and physical activity. J Exp Biol. 2005;208(20):39073923. doi:10.1242/jeb.01830

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Rice PE, Nimphius S. When task constraints delimit movement strategy: implications for isolated joint training in dancers. Front Sports Act Living. 2020;2(49):1–8.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Baltich J, Emery CA, Stefanyshyn D, Nigg BM. The effects of isolated ankle strengthening and functional balance training on strength, running mechanics, postural control and injury prevention in novice runners: design of a randomized controlled trial. BMC Musculoskelet Disord. 2014;15(1):407. PubMed ID: 25471989 doi:10.1186/1471-2474-15-407

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Schache AG, Blanch PD, Dorn TW, Brown NA, Rosemond D, Pandy MG. Effect of running speed on lower limb joint kinetics. Med Sci Sports Exerc. 2011;43(7):12601271. PubMed ID: 21131859 doi:10.1249/MSS.0b013e3182084929

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Lichtwark GA, Wilson AM. In vivo mechanical properties of the human Achilles tendon during one-legged hopping. J Exp Biol. 2005;208(24):47154725. doi:10.1242/jeb.01950

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Bohm S, Mersmann F, Arampatzis A. Human tendon adaptation in response to mechanical loading: a systematic review and meta-analysis of exercise intervention studies on healthy adults. Sports Med Open. 2015;1(1):7. PubMed ID: 27747846 doi:10.1186/s40798-015-0009-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bohm S, Mersmann F, Tettke M, Kraft M, Arampatzis A. Human achilles tendon plasticity in response to cyclic strain: effect of rate and duration. J Exp Biol. 2014;217(22):40104017. doi:10.1242/jeb.112268

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kubo K, Miyazaki D, Ikebukuro T, Yata H, Okada M, Tsunoda N. Active muscle and tendon stiffness of plantar flexors in sprinters. J Sports Sci. 2017;35(8):742748. PubMed ID: 27211524 doi:10.1080/02640414.2016.1186814

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    McCrum C, Oberlander KD, Epro G, et al. Loading rate and contraction duration effects on in vivo human achilles tendon mechanical properties. Clin Physiol Funct Imaging. 2018;38(3):517523. PubMed ID: 28944585 doi:10.1111/cpf.12472

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Pohl MB, Farr L. A comparison of foot arch measurement reliability using both digital photography and calliper methods. J Foot Ankle Res. 2010;3(1):14. PubMed ID: 20630090 doi:10.1186/1757-1146-3-14

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155163. PubMed ID: 27330520 doi:10.1016/j.jcm.2016.02.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Sole CJ, Mizuguchi S, Sato K, Moir GL, Stone MH. Phase characteristics of the countermovement jump force-time curve: a comparison of athletes by jumping ability. J Strength Cond Res. 2018;32(4):11551165. PubMed ID: 28644194 doi:10.1519/JSC.0000000000001945

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hughes S, Warmehoven J., Haff G., Chapman D., Nimphius S. Countermovement jump and squat jump force-time curve analysis in control and fatigue conditions. J Strength Cond Res. 2020. doi:10.1519/JSC.0000000000003955

    • Search Google Scholar
    • Export Citation
  • 28.

    Nimphius S, McGuigan MR, Suchomel TJ, Newton RU. Variability of a “force signature” during windmill softball pitching and relationship between discrete force variables and pitch velocity. Hum Mov Sci. 2016;47:151158. PubMed ID: 26999033 doi:10.1016/j.humov.2016.03.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    De Ridder R, Willems T, Vanrenterghem J, Robinson M, Pataky T, Roosen P. Gait kinematics of subjects with ankle instability using a multisegmented foot model. Med Sci Sports Exerc. 2013;45(11):21292136. PubMed ID: 23657166 doi:10.1249/MSS.0b013e31829991a2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Pataky TC. One-dimensional statistical parametric mapping in python. Comput Methods Biomech Biomed Engin. 2012;15(3):295301. PubMed ID: 21756121 doi:10.1080/10255842.2010.527837

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Blanca MJ, Alarcon R, Arnau J, Bono R, Bendayan R. Non-normal data: is ANOVA still a valid option? Psicothema. 2017;29(4):552557. PubMed ID: 29048317

    • Search Google Scholar
    • Export Citation
  • 32.

    Cohen J. Statistical Power Analysis for the Behavioral SciencesNew York, NY: Academic press; 2013.

  • 33.

    Bernards JR, Sato K, Haff GG, Bazyler CD. Current research and statistical practices in sport science and a need for change. Sports. 2017;5(4):87. doi:10.3390/sports5040087

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Lichtwark GA, Bougoulias K, Wilson AM. Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running. J Biomech. 2007;40(1):157164. PubMed ID: 16364330 doi:10.1016/j.jbiomech.2005.10.035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Russell JA, Kruse DW, Nevill AM, Koutedakis Y, Wyon MA. Measurement of the extreme ankle range of motion required by female ballet dancers. Foot Ankle Spec. 2010;3(6):324330. PubMed ID: 20581228 doi:10.1177/1938640010374981

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Zelik KE, Franz JR. It’s positive to be negative: achilles tendon work loops during human locomotion. PLoS One. 2017;12(7):e0179976. PubMed ID: 28671955 doi:10.1371/journal.pone.0179976

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4020 3587 284
Full Text Views 537 46 4
PDF Downloads 290 59 5