The Effects of Body Position on Trochanteric Soft Tissue Thickness—Implications for Predictions of Impact Force and Hip Fracture Risk During Lateral Falls

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Waterloo
Restricted access

Trochanteric soft tissue thickness (TSTT) is a protective factor against fall-related hip fractures. This study’s objectives were to determine: (1) the influence of body posture on TSTT and (2) the downstream effects of TSTT on biomechanical model predictions of fall-related impact force (Ffemur) and hip fracture factor of risk. Ultrasound was used to measure TSTT in 45 community-dwelling older adults in standing, supine, and side-lying positions with hip rotation angles of −25°, 0°, and 25°. Supine TSTT (mean [SD] = 5.57 [2.8] cm) was 29% and 69% greater than in standing and side-lying positions, respectively. The Ffemur based on supine TSTT (3380 [2017] N) was 19% lower than the standing position (4173 [1764] N) and 31% lower than the side-lying position (4908 [1524] N). As factor of risk was directly influenced by Ffemur, the relative effects on fracture risk were similar. While less pronounced (<10%), the effects of hip rotation angle were consistent across TSTT, Ffemur, and factor of risk. Based on the sensitivity of impact models to TSTT, these results highlight the need for a standardized TSTT measurement approach. In addition, the consistent influence of hip rotation on TSTT (and downstream model predictions) support its importance as a factor that may influence fall-related hip fracture risk.

The authors are with the Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada.

Laing (actlaing@uwaterloo.ca) is corresponding author.

Supplementary Materials

    • Supplementary Material (PDF 213 KB)
  • 1.

    Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17(12):17261733. PubMed ID: 16983459 doi:10.1007/s00198-006-0172-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Braithwaite RS, Col NF, Wong JB. Estimating hip fracture morbidity, mortality and costs. J Am Geriatr Soc. 2003;51(3):364370. PubMed ID: 12588580 doi:10.1046/j.1532-5415.2003.51110.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hopkins RB, Burke N, Von Keyserlingk C, et al. The current economic burden of illness of osteoporosis in Canada. Osteoporos Int. 2016;27(10):30233032. PubMed ID: 27166680 doi:10.1007/s00198-016-3631-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Stevens JA, Rudd RA. The impact of decreasing U.S. hip fracture rates on future hip fracture estimates. Osteoporos Int. 2013;24(10):27252728. PubMed ID: 23632827 doi:10.1007/s00198-013-2375-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Nankaku M, Kanzaki H, Tsuboyama T, Nakamura T. Evaluation of hip fracture risk in relation to fall direction. Osteoporosis Int. 2005;16(11):13151320. doi:10.1007/s00198-005-1843-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Yang Y, Komisar V, Shishov N, et al. The effect of fall biomechanics on risk for hip fracture in older adults: a cohort study of video-captured falls in long-term care. J Bone Miner Res. 2020;35(10):19141922. PubMed ID: 32402136 doi:10.1002/jbmr.4048

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bhattacharya P, Altai Z, Qasim M, Viceconti M. A multiscale model to predict current absolute risk of femoral fracture in a postmenopausal population. Biomech Model Mechanobiol. 2019;18(2):301318. PubMed ID: 30276488 doi:10.1007/s10237-018-1081-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Bouxsein ML, Szulc P, Munoz F, Thrall E, Sornay-Rendu E, Delmas PD. Contribution of trochanteric soft tissues to fall force estimates, the factor of risk, and prediction of hip fracture risk. J Bone Miner Res. 2007;22(6):825831. PubMed ID: 17352651 doi:10.1359/jbmr.070309

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Dufour AB, Roberts B, Broe KE, Kiel DP, Bouxsein ML, Hannan MT. The factor-of-risk biomechanical approach predicts hip fracture in men and women: the framingham study. Osteoporos Int. 2012;23(2):513520. PubMed ID: 21344243 doi:10.1007/s00198-011-1569-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Hayes WC, Myers ER, Robinovitch SN, Van Den Kroonenberg A, Courtney AC, McMahon TA. Etiology and prevention of age-related hip fractures. Bone. 1996;18(1):S77S86. doi:10.1016/8756-3282(95)00383-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Luo Y. A biomechanical sorting of clinical risk factors affecting osteoporotic hip fracture. Osteoporos Int. 2016;27(2):423439. PubMed ID: 26361947 doi:10.1007/s00198-015-3316-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Aspray TJ. Fragility fracture: recent developments in risk assessment. Ther Adv Musculoskelet Dis. 2015;7(1):1725. PubMed ID: 25650086 doi:10.1177/1759720X14564562

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hippisley-Cox J, Coupland C. Derivation and validation of updated QFracture algorithm to predict risk of osteoporotic fracture in primary care in the United Kingdom: prospective open cohort study. BMJ. 2012;344:e3427. PubMed ID: 22619194 doi:10.1136/bmj.e3427

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19(4):385397. PubMed ID: 18292978 doi:10.1007/s00198-007-0543-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Leslie WD, Lix LM, Manitoba Bone Density Program. Simplified 10-year absolute fracture risk assessment: a comparison of men and women. J Clin Densitom. 2010;13(2):141146. PubMed ID: 20435264 doi:10.1016/j.jocd.2010.02.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV. Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos Int. 2008;19(10):14311444. PubMed ID: 18324342 doi:10.1007/s00198-008-0588-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Silva BC, Leslie WD, Resch H, et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res. 2014;29(3):518530. PubMed ID: 24443324 doi:10.1002/jbmr.2176

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Majumder S, Roychowdhury A, Pal S. Hip fracture and anthropometric variations: dominance among trochanteric soft tissue thickness, body height and body weight during sideways fall. Clin Biomech. 2013;28(9–10):10341040. doi:10.1016/j.clinbiomech.2013.09.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Nasiri M, Luo Y. Study of sex differences in the association between hip fracture risk and body parameters by DXA-based biomechanical modeling. Bone. 2016;90:9098. PubMed ID: 27292653 doi:10.1016/j.bone.2016.06.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Robinovitch SN, McMahon TA, Hayes WC. Force attenuation in trochanteric soft tissues during impact from a fall. J Orthop Res. 1995;13(6):956962. PubMed ID: 8544034 doi:10.1002/jor.1100130621

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Majumder S, Roychowdhury A, Pal S. Effects of trochanteric soft tissue thickness and hip impact velocity on hip fracture in sideways fall through 3D finite element simulations. J Biomech. 2008;41(13):28342842. PubMed ID: 18718597 doi:10.1016/j.jbiomech.2008.07.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Robinovitch SN, Hayes WC, McMahon TA. Prediction of femoral impact forces in falls on the hip. J Biomech Eng. 1991;113(4):366374. PubMed ID: 1762432 doi:10.1115/1.2895414

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Nielson CM, Bouxsein ML, Freitas SS, Ensrud KE, Orwoll ES. Osteoporotic fractures in men (MrOS) research group. Trochanteric soft tissue thickness and hip fracture in older men. J Clin Endocrinol Metab. 2009;94(2):491496. PubMed ID: 19017753 doi:10.1210/jc.2008-1640

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Roberts BJ, Thrall E, Muller JA, Bouxsein ML. Comparison of hip fracture risk prediction by femoral aBMD to experimentally measured factor of risk. Bone. 2010;46(3):742746. PubMed ID: 19854307 doi:10.1016/j.bone.2009.10.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Bachmann KN, Fazeli PK, Lawson EA, et al. Comparison of hip geometry, strength, and estimated fracture risk in women with anorexia nervosa and overweight/obese women. J Clin Endocrinol Metab. 2014;99(12):46644673. PubMed ID: 25062461 doi:10.1210/jc.2014-2104

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Martel DR, Lysy M, Laing AC. Predicting population level hip fracture risk: a novel hierarchical model incorporating probabilistic approaches and factor of risk principles. Comput Methods Biomech Biomed Engin. 2020;23(15):12011214. PubMed ID: 32687412 doi:10.1080/10255842.2020.1793331

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Majumder S, Roychowdhury A, Pal S. Hip fracture and anthropometric variations: dominance among trochanteric soft tissue thickness, body height and body weight during sideways fall. Clin Biomech. 2013;28(9–10):10341040. doi:10.1016/j.clinbiomech.2013.09.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Choi W, Hoffer J, Robinovitch S. Effect of hip protectors, falling angle and body mass index on pressure distribution over the hip during simulated falls. Clin Biomech. 2010;25(1):6369. doi:10.1016/j.clinbiomech.2009.08.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Choi WJ, Robinovitch SN. Pressure distribution over the palm region during forward falls on the outstretched hands. J Biomech. 2011;44(3):532539. PubMed ID: 21035120 doi:10.1016/j.jbiomech.2010.09.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Bhan S, Levine I, Laing AC. The influence of body mass index and gender on the impact attenuation properties of flooring systems. J Appl Biomech. 2013;29(6):731739. PubMed ID: 23429161 doi:10.1123/jab.29.6.731

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Bhan S, Levine IC, Laing AC. Energy absorption during impact on the proximal femur is affected by body mass index and flooring surface. J Biomech. 2014;47(10):23912397. PubMed ID: 24837217 doi:10.1016/j.jbiomech.2014.04.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Pretty SP, Martel DR, Laing AC. The influence of body mass index, sex, & muscle activation on pressure distribution during lateral falls on the hip. Ann Biomed Eng. 2017;45(12):27752783. PubMed ID: 28940053 doi:10.1007/s10439-017-1928-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    De Laet C, Kanis JA, Oden A, et al. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int. 2005;16(11):13301338. PubMed ID: 15928804 doi:10.1007/s00198-005-1863-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Schacter I, Leslie WD. Estimation of trochanteric soft tissue thickness from dual-energy X-ray absorptiometry. J Clin Densitom. 2014;17(1):5459. PubMed ID: 23465643 doi:10.1016/j.jocd.2013.01.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Maitland LA, Myers ER, Hipp JA, Hayes WC, Greenspan SL. Read my hips: measuring trochanteric soft tissue thickness. Calcif Tissue Int. 1993;52(2):8589. PubMed ID: 8443696 doi:10.1007/BF00308313

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Choi WJ, Russell CM, Tsai CM, Arzanpour S, Robinovitch SN. Age-related changes in dynamic compressive properties of trochanteric soft tissues over the hip. J Biomech. 2015;48(4):695700. PubMed ID: 25596629 doi:10.1016/j.jbiomech.2014.12.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Levine IC, Minty LE, Laing AC. Factors that influence soft tissue thickness over the greater trochanter: application to understanding hip fractures. Clin Anat. 2015;28(2):253261. PubMed ID: 25546649 doi:10.1002/ca.22499

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Minns RJ, Marsh AM, Chuck A, Todd J. Are hip protectors correctly positioned in use? Age Ageing. 2007;36(2):140144. PubMed ID: 17272302 doi:10.1093/ageing/afl186

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Klibanov AL, Hossack JA. Ultrasound in radiology: from anatomic, functional, molecular imaging to drug delivery and image-guided therapy. Invest Radiol. 2015;50(9):657670. PubMed ID: 26200224 doi:10.1097/RLI.0000000000000188

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Wells PN, Liang HD. Medical ultrasound: imaging of soft tissue strain and elasticity. J R Soc Interface. 2011;8(64):15211549. PubMed ID: 21680780 doi:10.1098/rsif.2011.0054

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Hill JC, Leiszler MS. Hip. In: Basics of musculoskeletal ultrasound. New York, NY: Springer-Verlag; 2013:8791. doi:10.1007/978-1-4614-3215-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Martinoli C, Bianchi S. Hip. In: Ultrasound of the musculoskeletal system. Berlin Heidelberg: Springer-Verlag; 2007:551610.

  • 43.

    O’Neill JM, Girish G. The adult hip. In: Musculoskeletal ultrasound anatomy and technique. New York, NY: Springer-Verlag; 2008:155178. doi:10.1007/978-0-387-76610-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Lekamwasam S, Lenora RS. Effect of leg rotation on hip bone mineral density measurements. J Clin Densitom. 2003;6(4):331336. PubMed ID: 14716045 doi:10.1385/JCD:6:4:331

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Cibulka MT. Determination and significance of femoral neck anteversion. Phys Ther. 2004;84(6):550558. PubMed ID: 15161420 doi:10.1093/ptj/84.6.550

  • 46.

    El Maghraoui A, Roux C. DXA scanning in clinical practice. QJM. 2008;101(8):605617. PubMed ID: 18334497 doi:10.1093/qjmed/hcn022

  • 47.

    Martel DR, Levine IC, Pretty SP, Laing AC. The influence of muscle activation on impact dynamics during lateral falls on the hip. J Biomech. 2018;66:111118. PubMed ID: 29153707 doi:10.1016/j.jbiomech.2017.11.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Keenan BE, Evans SL. Biomechanical testing of hip protectors following the Canadian standards association express document. Osteoporos Int. 2019;30(6):12051214. PubMed ID: 30941484 doi:10.1007/s00198-019-04914-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Laing AC, Feldman F, Jalili M, Tsai CM, Robinovitch SN. The effects of pad geometry and material properties on the biomechanical effectiveness of 26 commercially available hip protectors. J Biomech. 2011;44(15):26272635. PubMed ID: 21899845 doi:10.1016/j.jbiomech.2011.08.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Lachance CC, Jurkowski MP, Dymarz AC, et al. Compliant flooring to prevent fall-related injuries in older adults: a scoping review of biomechanical efficacy, clinical effectiveness, cost-effectiveness, and workplace safety. PLoS One. 2017;12(2):e0171652. PubMed ID: 28166265 doi:10.1371/journal.pone.0171652

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Laing AC, Robinovitch SN. The force attenuation provided by hip protectors depends on impact velocity, pelvic size, and soft tissue stiffness. J Biomech Eng. 2008;130(6):061005. PubMed ID: 19045534 doi:10.1115/1.2979867

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Lim KT, Choi WJ. Soft tissue stiffness over the hip increases with age and its implication in hip fracture risk in older adults. J Biomech. 2019;93:2833. PubMed ID: 31196566 doi:10.1016/j.jbiomech.2019.06.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2389 2389 380
Full Text Views 35 35 2
PDF Downloads 46 46 3