Effects of Voluntary Quadriceps–Hamstring Cocontraction on Tibiofemoral Force During Isometric Knee Extension and Knee Flexion Exercises With Constant External Resistance

in Journal of Applied Biomechanics

Click name to view affiliation

Andrea BiscariniUniversity of Perugia

Search for other papers by Andrea Biscarini in
Current site
Google Scholar
PubMed
Close
*
,
Roberto PanichiUniversity of Perugia

Search for other papers by Roberto Panichi in
Current site
Google Scholar
PubMed
Close
*
,
Cristina V. DieniThe University of Alabama at Birmingham

Search for other papers by Cristina V. Dieni in
Current site
Google Scholar
PubMed
Close
*
, and
Samuele ContemoriUniversity of Queensland

Search for other papers by Samuele Contemori in
Current site
Google Scholar
PubMed
Close
*
Restricted access

A biomechanical model has been developed to assess the effects of a voluntary effort of quadriceps–hamstring cocontraction on tibiofemoral force during isometric knee flexion and knee extension exercises with constant external resistance. The model establishes the analytic condition in the moment arms and traction angles of the quadriceps and hamstring muscles that determines the direction (anterior/posterior) of the tibiofemoral shear force developed by the cocontraction. This model also establishes the mechanical effect (loading/unloading) on the anterior cruciate ligament (ACL). At about 15° of knee flexion (where the ACL experiences its maximum quadriceps-induced strain) a voluntary quadriceps–hamstring cocontraction effort yields: (1) nearly the same enhancement in hamstring and quadriceps activation, (2) an increase in hamstring force about 1.5 times higher than that of the quadriceps, and (3) posterior (ACL unloading) tibial pull and compressive tibiofemoral force that increase linearly with the level of quadriceps and hamstring activation. The sensitivity of the results to intersubject variability in the posterior slope of the tibial plateau and muscle moment arms has been estimated with the use of anatomic data available in the literature. An anterior (ACL loading) tibial pull is actually developed at 15° of knee flexion by a voluntary effort of quadriceps–hamstring cocontraction as the posterior tibial slope exceeds 14°.

Biscarini and Panichi are with the Department of Medicine and Surgery, University of Perugia, Perugia, Umbria, Italy. Dieni is with the Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA. Contemori is with the Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia.

Biscarini (andrea.biscarini@unipg.it) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Baratta R, Solomonow M, Zhou BH, Letson D, Chuinard R, D’Ambrosia R. Muscular coactivation: the role of the antagonist musculature in maintaining knee stability. Am J Sports Med. 1988;16(2):113122. PubMed ID: 3377094 doi:10.1177/036354658801600205

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Aagaard P, Simonsen EB, Andersen JL, Magnusson SP, Bojsen-Møller F, Dyhre-Poulsen P. Antagonist muscle coactivation during isokinetic knee extension. Scand J Med Sci Sports. 2000;10(2):5867. PubMed ID: 10755275 doi:10.1034/j.1600-0838.2000.010002058.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Herzog W, Read LJ. Lines of action and moment arms of the major force-carrying structures crossing the human knee joint. J Anat. 1993;82(2):213230.

    • Search Google Scholar
    • Export Citation
  • 4.

    Butler DL, Noyes FR, Grood ES. Ligamentous restraints to anteriorposterior drawer in the human knee: a biomechanical study. J Bone Joint Surg Am. 1980;62(2):259270. PubMed ID: 7358757 doi:10.2106/00004623-198062020-00013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Pandy MG, Shelburne KB. Dependence of cruciate-ligament loading on muscle forces and external load. J Biomech. 1997;30(10):10151024. PubMed ID: 9391868 doi:10.1016/S0021-9290(97)00070-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Imran A, O’Connor JJ. Control of knee stability after ACL injury or repair: interaction between hamstrings contraction and tibial translation. Clin Biomech. 1998;13(3):153162. doi:10.1016/S0268-0033(97)00030-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Li G, Rudy TW, Sakane M, Kanamori A, Ma CB, Woo SL-Y. The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. J Biomech. 1999;32(4):395400. PubMed ID: 10213029 doi:10.1016/S0021-9290(98)00181-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Yanagawa T, Shelburne KB, Serpas F, Pandy MG. Effect of hamstrings muscle action on stability of the ACL-deficient knee in isokinetic extension exercise. Clin Biomech. 2002;17(9–10):705712. doi:10.1016/S0268-0033(02)00104-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Beynnon BD, Fleming BC. Anterior cruciate ligament strain in-vivo: a review of previous work. J Biomech. 1998;31(6):519525. PubMed ID: 9755036 doi:10.1016/S0021-9290(98)00044-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Biscarini A, Benvenuti P, Botti FM, Brunetti A, Brunetti O, Pettorossi VE. Voluntary enhanced cocontraction of hamstring muscles during open kinetic chain leg extension exercise: its potential unloading effect on the anterior cruciate ligament. Am J Sports Med. 2014;42(9):21032112. PubMed ID: 24918112 doi:10.1177/0363546514536137

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Biscarini A, Contemori S, Busti D, Botti FM, Pettorossi VE. Knee flexion with quadriceps cocontraction: a new therapeutic exercise for the early stage of ACL rehabilitation. J. Biomech. 2016;49(16):38553860. PubMed ID: 28573973 doi:10.1016/j.jbiomech.2016.10.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Biscarini A, Botti FM, Pettorossi VE. Selective contribution of each hamstring muscle to anterior cruciate ligament protection and tibiofemoral joint stability in leg-extension exercise: a simulation study. Eur J Appl Physiol. 2013;113(9):22632273. PubMed ID: 23670482 doi:10.1007/s00421-013-2656-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Kisner C, Colby L. Therapeutic Exercise: Foundations and Techniques. 6th ed. Philadelphia, PA: FA Davis Company; 2021:813816.

  • 14.

    Gryzlo SM, Patek RM, Pink M, Perry J. Electromyographic analysis of knee rehabilitation exercises. J Orthop Sports Phys Ther. 1994;20(1):3643. PubMed ID: 8081408 doi:10.2519/jospt.1994.20.1.36

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Biscarini A. Minimization of the knee shear joint load in leg extension equipment. Med Eng Phys. 2008;30(8):10321041. PubMed ID: 18282780 doi:10.1016/j.medengphy.2007.12.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Matsuda S, Miura H, Nagamine R, et al. Posterior tibial slope in the normal and varus knee. Am J Knee Surg. 1999;12(3):165168. PubMed ID: 10496466

  • 17.

    Tsaopoulos DE, Baltzopoulos V, Maganaris CN. Human patellar tendon moment arm length: measurement considerations and clinical implications for joint loading assessment. Clin Biomech. 2006;21(7):657667. doi:10.1016/j.clinbiomech.2006.02.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Smidt GL. Biomechanical analysis of knee flexion and extension. J Biomech. 1973;6(1):7992. PubMed ID: 4693870 doi:10.1016/0021-9290(73)90040-7

  • 19.

    Spoor CW, van Leeuwen JL. Knee muscle moment arms from MRI and from tendon travel. J Biomech. 1992;25(2):201206. PubMed ID: 1733995 doi:10.1016/0021-9290(92)90276-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Wretenberg P, Németh G, Lamontagne M, Lundin B. Passive knee muscle moment arms measured in vivo with MRI. Clin Biomech. 1996;11(8):439446. doi:10.1016/S0268-0033(96)00030-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Buford WL Jr, Ivey FM Jr, Malone JD, et al. Muscle balance at the knee—moment arms for the normal knee and the ACL-minus knee. IEEE Trans Rehabil Eng. 1997;5(4):367379. PubMed ID: 9422462 doi:10.1109/86.650292

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Kellis E, Baltzopoulos V. In vivo determination of the patella tendon and hamstrings moment arms in adult males using video fluoroscopy during submaximal knee extension and flexion. Clin Biomech. 1999;14(2):118124. doi:10.1016/S0268-0033(98)00055-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Arnold EM, Ward SR, Lieber RL, Delp SL. A model of the lower limb for analysis of human movement. Ann Biomed Eng. 2010;38(2):269279. PubMed ID: 19957039 doi:10.1007/s10439-009-9852-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Winter A. Biomechanics and Motor Control of Human Movement. 4th ed. Hoboken, NJ: Wiley; 2009, p. 109.

  • 25.

    Escamilla RF, Fleisig GS, Zheng N, Barrentine SW, Wilk KE, Andrews JR. Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. Med Sci Sports Exerc. 1998;30(4):556569. PubMed ID: 9565938 doi:10.1097/00005768-199804000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Arnold EM, Delp SL. Fibre operating lengths of human lower limb muscles during walking. Phil Trans R Soc B. 2011;366(1570):15301539. PubMed ID: 21502124 doi:10.1098/rstb.2010.0345

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Knapik JJ, Wright JE, Mawdsley RH, Braun J. Isometric, isotonic, and isokinetic torque variations in four muscle groups through a range of joint motion. Phys Ther. 1983;63(6):938947. PubMed ID: 6856681 doi:10.1093/ptj/63.6.938

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Shelburne KB, Pandy MG. A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions. J Biomech. 1997;30(2):163176. PubMed ID: 9001937 doi:10.1016/S0021-9290(96)00119-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Escamilla RF, Macleod TD, Wilk KE, Paulos L, Andrews JA. Anterior cruciate ligament strain and tensile forces for weight-bearing and non-weight-bearing exercises: a guide to exercise selection. J Orthop Sports Phys Ther. 2012;42(3):208220. PubMed ID: 22387600 doi:10.2519/jospt.2012.3768

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3809 3124 214
Full Text Views 51 34 0
PDF Downloads 63 35 0