Regulation of Forward Angular Impulse in Tasks With Backward Translation

in Journal of Applied Biomechanics

Click name to view affiliation

Witaya MathiyakomCalifornia State University Northridge
University of Southern California

Search for other papers by Witaya Mathiyakom in
Current site
Google Scholar
PubMed
Close
*
,
Rand WilcoxUniversity of Southern California

Search for other papers by Rand Wilcox in
Current site
Google Scholar
PubMed
Close
*
, and
Jill L. McNitt-GrayUniversity of Southern California

Search for other papers by Jill L. McNitt-Gray in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Studying how elite athletes satisfy multiple mechanical objectives when initiating well-practiced, goal-directed tasks provides insights into the control and dynamics of whole-body movements. This study investigated the coordination of multiple body segments and the reaction force (RF) generated during foot contact when regulating forward angular impulse in backward translating tasks. Six highly skilled divers performed inward somersaults (upward and backward jump with forward rotation) and inward timers (upward and backward jump without rotation) from a stationary platform. Sagittal plane kinematics and RFs were recorded simultaneously during the takeoff phase. Regulation of the forward angular impulse was achieved by redirecting the RF about the total body center of mass. Significantly more backward-directed RF was observed during the first and second peak horizontal RF of the inward somersaults than the inward timers. Modulation of the horizontal RF altered the RF direction about the center of mass and the lower-extremity segments. Backward leg and forward trunk orientation and a set of relatively large knee extensor and small hip flexor net joint moments were required for forward angular impulse generation. Understanding how the forward angular impulse is regulated in trained individuals provides insights for clinicians to consider when exploring interventions related to fall prevention.

Mathiyakom is with the Department of Physical Therapy, California State University Northridge, Northridge, CA, USA. Mathiyakom and McNitt-Gray are with the Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA. Wilcox is with the Department of Psychology, University of Southern California, Los Angeles, CA, USA. McNitt-Gray is also with the Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.

Mathiyakom (witaya.mathiyakom@csun.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Miller DI, Hennig E, Pizzimenti MA, Jones IC, Nelson RC. Kinetic and kinematic characteristics of 10-m platform performances of elite divers: I. Back takeoffs. J Appl Biomech. 1989;5(1):6088. doi:10.1123/ijsb.5.1.60

    • Search Google Scholar
    • Export Citation
  • 2.

    Miller DI, Jones IC, Pizzimenti MA, Hennig E, Nelson RC. Kinetic and kinematic characteristics of 10-m platform performances of elite divers: II. Reverse takeoffs. J Appl Biomech. 1990;6(3):283308. doi:10.1123/ijsb.6.3.283

    • Search Google Scholar
    • Export Citation
  • 3.

    Miller DI, Jones IC, Pizzimenti MA. Taking off: greg louganis’ diving style. Soma: Eng Hum Body. 1988;2(4):2028.

  • 4.

    Hamill J, Golden D, Richard M, Williams M. Dynamics of selected tower dive take-offs. In: Terauds J, Barham E, eds. Biomechanics of Sports II. Delmar: Research Center for Sports; 1985:200207.

    • Search Google Scholar
    • Export Citation
  • 5.

    Nicol A, Watkins J. Biomechanical analysis of somersault activities. In: Jonsson B, ed. Biomechanics X-B. Champaign, IL: Human Kinetics; 1987:673677.

    • Search Google Scholar
    • Export Citation
  • 6.

    McNitt-Gray JL, Hester DM, Mathiyakom W, Munkasy BA. Mechanical demand and multijoint control during landing depend on orientation of the body segments relative to the reaction force. J Biomech. 2001;34(11):14711482. PubMed ID: 11672722 doi:10.1016/S0021-9290(01)00110-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Pijnappels M, Bobbert MF, Van Dieën JH. Contribution of the support limb in control of angular momentum after tripping. J Biomech. 2004;37(12):18111818. PubMed ID: 15519588 doi:10.1016/j.jbiomech.2004.02.038

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Pijnappels M, Bobbert MF, Van Dieën JH. Push-off reactions in recovery after tripping discriminate young subjects, older non-fallers and older fallers. Gait Posture. 2005;21(4):388394. PubMed ID: 15886128 doi:10.1016/j.gaitpost.2004.04.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Mathiyakom W, McNitt-Gray JL, Wilcox R. Lower extremity control and dynamics during backward angular impulse generation in backward translating tasks. Exp Brain Res. 2006;169(3):377388. PubMed ID: 16273396 doi:10.1007/s00221-005-0150-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Mathiyakom W, McNitt-Gray JL, Wilcox R. Lower extremity control and dynamics during backward angular impulse generation in forward translating tasks. J Biomech. 2006;39(6):9901000. PubMed ID: 15878165 doi:10.1016/j.jbiomech.2005.02.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Mathiyakom W, McNitt-Gray JL, Wilcox RR. Regulation of angular impulse during two forward translating tasks. J Appl Biomech. 2007;23(2):149161. PubMed ID: 17603134 doi:10.1123/jab.23.2.149

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    McNitt-Gray JL. 2016 American society of biomechanics hay award lecture: preparing for impact-biomechanical inspirations from Olympic sports. J Appl Biomech. 2018;34(4):249257. PubMed ID: 29991299 doi:10.1123/jab.2017-0270

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Zaferiou AM, Wilcox R, McNitt-Gray JL. Whole-body balance regulation during the turn phase of piqué and pirouette turns with varied rotational demands. Med Probl Perform Art. 2016;31(2):96103. doi:10.21091/mppa.2016.2017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Peterson TJ, Wilcox RR, McNitt-Gray JL. Angular impulse and balance regulation during the golf swing. J Appl Biomech. 2016;32(4):342349. PubMed ID: 26958870 doi:10.1123/jab.2015-0131

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Peterson TJ, McNitt-Gray JL. Coordination of lower extremity multi-joint control strategies during the golf swing. J Biomech. 2018;77:2633. PubMed ID: 29945785 doi:10.1016/j.jbiomech.2018.06.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Peterson TJ, McNitt-Gray JL. Regulation of linear and angular impulse during the golf swing with modified address positions. J Appl Biomech. 2018;35(1):2531. doi:10.1123/jab.2017-0163

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Ridderikhoff A, Batelaan JH, Bobbert MF. Jumping for distance: control of the external force in squat jumps. Med Sci Sports Exerc. 1999;31(8):11961204. PubMed ID: 10449024 doi:10.1097/00005768-199908000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Mathiyakom W, McNitt-Gray JL. Regulation of angular impulse during fall recovery. J Rehabil Res Dev. 2008;45(8):12371238. PubMed ID: 19235123 doi:10.1682/JRRD.2008.02.0033

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    McNitt-Gray JL, Munaretto J, Zaferiou A, Requejo PS, Flashner H. Regulation of reaction forces during the golf swing. Sport Biomech. 2013;12(2):121131. doi:10.1080/14763141.2012.738699

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Zaferiou AM, Flashner H, Wilcox RR, McNitt-Gray JL. Lower extremity control during turns initiated with and without hip external rotation. J Biomech. 2017;52:130139. PubMed ID: 28057348 doi:10.1016/j.jbiomech.2016.12.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Riley PO, Krebs DE, Popat RA. Biomechanical analysis of failed sit-to-stand. IEEE Trans Rehabil Eng. 1997;5(4):353359. PubMed ID: 9422460 doi:10.1109/86.650289

  • 22.

    Okubo Y, Schoene D, Caetano MJ, et al. Stepping impairment and falls in older adults: a systematic review and meta-analysis of volitional and reactive step tests. Ageing Res Rev. 2021;66:101238. PubMed ID: 33352293 doi:10.1016/j.arr.2020.101238

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    De Leva P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J Biomech. 1996;29(9):12231230. PubMed ID: 8872282 doi:10.1016/0021-9290(95)00178-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Wells R, Evans N. Functions and recruitment patterns of one- and two-joint muscles under isometric and walking conditions. Hum Mov Sci. 1987;6(4):349372. doi:10.1016/0167-9457(87)90004-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    van Ingen Schenau GJ, Dorssers WM, Welter TG, Beelen A, de Groot G, Jacobs R. The control of mono‐articular muscles in multijoint leg extensions in man. J Physiol. 1995;484(1):247254. doi:10.1113/jphysiol.1995.sp020662

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Jackson KM. Fitting of mathematical functions to biomechanical data. IEEE Trans Biomed Eng. 1979;BME-26(2):122124. PubMed ID: 761932 doi:10.1109/TBME.1979.326551

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Wilcox RR. Introduction to Robust Estimation and Hypothesis Testing. 4th ed. San Diego: Academic Press; 2017.

  • 28.

    Wilcox RR, Peterson TJ, McNitt-Gray JL. Data analyses when sample sizes are small: modern advances for dealing with outliers, skewed distributions, and heteroscedasticity. J Appl Biomech. 2018;34(4):258261. PubMed ID: 30045651 doi:10.1123/jab.2017-0269

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Wilcox RR. Comparing dependent robust correlations. Br J Math Stat Psychol. 2016;69(3):215224. PubMed ID: 27114391 doi:10.1111/bmsp.12069

  • 30.

    Crenna P, Frigo C, Massion J, Pedotti A. Forward and backward axial synergies in man. Exp Brain Res. 1987;65(3):538548. PubMed ID: 3556482 doi:10.1007/BF00235977

  • 31.

    Chan K, Lee JW, Unger J, Yoo J, Masani K, Musselman KE. Reactive stepping after a forward fall in people living with incomplete spinal cord injury or disease. Spinal Cord. 2020;58(2):185193. PubMed ID: 31358908 doi:10.1038/s41393-019-0332-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Mathiyakom W, McNitt-Gray JLL, Requejo P, Costa K. Modifying center of mass trajectory during sit-to-stand tasks redistributes the mechanical demand across the lower extremity joints. Clin Biomech. 2005;20(1):105111. doi:10.1016/j.clinbiomech.2004.08.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Horak FB, Dimitrova D, Nutt JG. Direction-specific postural instability in subjects with Parkinson’s disease. Exp Neurol. 2005;193(2):504521. PubMed ID: 15869953 doi:10.1016/j.expneurol.2004.12.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Salot P, Patel P, Bhatt T. Reactive balance in individuals with chronic stroke: biomechanical factors related to perturbation-induced backward falling. Phys Ther. 2016;96(3):338347. PubMed ID: 26206220 doi:10.2522/ptj.20150197

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Roberts TJ, Scales JA. Mechanical power output during running accelerations in wild turkeys. J Exp Biol. 2002;205(10):14851494. doi:10.1242/jeb.205.10.1485

  • 36.

    Winter DA. Overall principle of lower limb support during stance phase of gait. J Biomech. 1980;13(11):923927. PubMed ID: 7275999 doi:10.1016/0021-9290(80)90162-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Seyfarth A, Friedrichs A, Wank V, Blickhan R. Dynamics of the long jump. J Biomech. 1999;32(12):12591267. PubMed ID: 10569704 doi:10.1016/S0021-9290(99)00137-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Prilutsky BI. Coordination of two- and one-joint muscles: functional consequences and implications for motor control. Motor Control. 2000;4(1):144. PubMed ID: 10675807 doi:10.1123/mcj.4.1.1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Hsiao ET, Robinovitch SN. Common protective movements govern unexpected falls from standing height. J Biomech. 1997;31(1):19. doi:10.1016/S0021-9290(97)00114-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Yu Y, Liang S, Wang Y, et al. Quantitative analysis of postural instability in patients with Parkinson’s disease. Parkinsons Dis. 2021;2021:5681870. PubMed ID: 33936583 doi:10.1155/2021/5681870

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Hsiao-Wecksler ET, Robinovitch SN. The effect of step length on young and elderly women’s ability to recover balance. Clin Biomech. 2007;22(5):574580. doi:10.1016/j.clinbiomech.2007.01.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Kuo AD, Zajac FE. A biomechanical analysis of muscle strength as a limiting factor in standing posture. J Biomech. 1993;26(suppl 1):137150. doi:10.1016/0021-9290(93)90085-S

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Dimitrova D, Nutt J, Horak FB. Abnormal force patterns for multidirectional postural responses in patients with Parkinson’s disease. Exp Brain Res. 2004;156(2):183195. PubMed ID: 14991211 doi:10.1007/s00221-003-1770-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Hsiao ET, Robinovitch SN. Elderly subjects’ ability to recover balance with a single backward step associates with body configuration at step contact. J Gerontol—Ser A Biol Sci Med Sci. 2001;56(1):M42M47. doi:10.1093/gerona/56.1.M42

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3691 2886 306
Full Text Views 31 13 0
PDF Downloads 38 12 0