Do Athletes With a Reconstructed Anterior Cruciate Ligament Respond Differently Than Controls to Visual Challenges When Dynamic Postural Stability is Assessed?

in Journal of Applied Biomechanics
View More View Less
  • 1 Western Washington University
  • | 2 Eastern Washington University
  • | 3 University of Montana
  • | 4 University of Northern Colorado
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

Individuals returning to sport after anterior cruciate ligament reconstruction (ACLR) are at an increased risk of sustaining a subsequent ACL injury. It is suspected that increased reliance on visual information to maintain stability may factor into this increased risk. The connection between visual reliance and ACLR is not well understood during dynamic tasks. Examination of the proposed visual reliance may help improve returning to sport standards and reduce subsequent ACL injury risk. A total of 12 ACLR individuals and 12 age- and sex-matched controls completed several trials of a normalized dynamic hop task on both limbs under 3 different visual conditions (eyes open, low visual disruption, and high visual disruption). Stroboscopic eyewear were worn by each participant to disrupt vision during testing. Ground reaction force data were collected during landing. Dynamic postural stability was assessed using 2 separate calculations: dynamic postural stability index and time to stability. No significant statistical interactions or group differences were observed. The stroboscopic eyewear did increase the medial–lateral stability index from the eyes open to the low visual disruption condition (P < .05). These findings suggest that ACLR individuals do not rely on visual information more than controls during a dynamic hop task.

Robey is with the Department of Health and Human Development, Western Washington University, Bellingham, WA, USA. Buchholz is with the Department of Wellness and Movement Sciences, Eastern Washington University, Cheney, WA, USA. Murphy is with the School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA. Smith and Heise are with the School of Sport and Exercise Science, University of Northern Colorado, Greeley, CO, USA.

Robey (nathan.robey@wwu.edu) is corresponding author.
  • 1.

    Majewski M, Susanne H, Klaus S. Epidemiology of athletic knee injuries: a 10-year study. Knee. 2006;13(3):184188. PubMed ID: 16603363 doi:10.1016/j.knee.2006.01.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Griffin LY, Albohm MJ, Arendt EA, et al. Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II Meeting, January 2005. Am J Sports Med. 2006;34(9):15121532. PubMed ID: 16905673 doi:10.1177/0363546506286866

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Mall NA, Chalmers PN, Moric M, et al. Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med. 2014;42(10):23632370. PubMed ID: 25086064 doi:10.1177/0363546514542796

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Myklebust G, Bahr R. Return to play guidelines after anterior cruciate ligament surgery. Br J Sports Med. 2005;39(3):127131. PubMed ID: 15728687 doi:10.1136/bjsm.2004.010900

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Monk AP, Davies LJ, Hopewell S, Harris K, Beard DJ, Price AJ. Surgical versus conservative interventions for treating anterior cruciate ligament injuries. Cochrane Database Syst Rev. 2016;4:CD0111366. doi:10.1002/14651858.CD011166.pub2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ardern CL, Taylor NF, Feller JA, Webster KE. Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: an updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. Br J Sports Med. 2014;48(21):15431552. PubMed ID: 25157180 doi:10.1136/bjsports-2013-093398

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Barber-Westin SD, Noyes FR. Factors used to determine return to unrestricted sports activities after anterior cruciate ligament reconstruction. Arthroscopy. 2011;27(12):16971705. PubMed ID: 22137326 doi:10.1016/j.arthro.2011.09.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hui C, Salmon LJ, Kok A, Maeno S, Linklater J, Pinczewski LA. Fifteen-year outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft for “isolated” anterior cruciate ligament tear. Am J Sports Med. 2011;39(1):8998. PubMed ID: 20962336 doi:10.1177/0363546510379975

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE. Incidence of contralateral and ipsilateral anterior cruciate ligament (ACL) injury after primary ACL reconstruction and return to sport. Clin J Sport Med. 2012;22(2):116121. PubMed ID: 22343967 doi:10.1097/JSM.0b013e318246ef9e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE. Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am J Sports Med. 2014;42(7):15671573. PubMed ID: 24753238 doi:10.1177/0363546514530088

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Salmon L, Russell V, Musgrove T, Pinczewski L, Refshauge K. Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy. 2005;21(8):948957. PubMed ID: 16084292 doi:10.1016/j.arthro.2005.04.110

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Wright RW, Dunn WR, Amendola A, et al. Risk of tearing the intact anterior cruciate ligament in the contralateral knee and rupturing the anterior cruciate ligament graft during the first 2 years after anterior cruciate ligament reconstruction: a prospective MOON cohort study. Am J Sports Med. 2007;35(7):11311134. PubMed ID: 17452511 doi:10.1177/0363546507301318

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Paterno MV, Schmitt LC, Ford KR, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):19681978. PubMed ID: 20702858 doi:10.1177/0363546510376053

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Paterno MV, Ford KR, Myer GD, Heyl R, Hewett TE. Limb asymmetries in landing and jumping 2 years following anterior cruciate ligament reconstruction. Clin J Sport Med. 2007;17(4):258262. PubMed ID: 17620778 doi:10.1097/JSM.0b013e31804c77ea

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    MARS Group, Wright RW, Huston LJ, et al. Descriptive epidemiology of the multicenter ACL revision study (MARS) cohort. Am J Sports Med. 2010;38(10):19791986. doi:10.1177/0363546510378645

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Kapreli E, Athanasopoulos S. The anterior cruciate ligament deficiency as a model of brain plasticity. Med Hypotheses. 2006;67(3):645650. PubMed ID: 16698187 doi:10.1016/j.mehy.2006.01.063

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Kapreli E, Athanasopoulos S, Gliatis J, et al. Anterior cruciate ligament deficiency causes brain plasticity: a functional MRI study. Am J Sports Med. 2009;37(12):24192426. PubMed ID: 19940314 doi:10.1177/0363546509343201

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Needle AR, Lepley AS, Grooms DR. Central nervous system adaptation after ligamentous injury: a summary of theories, evidence, and clinical interpretation. Sports Med. 2017;47(7):12711288. PubMed ID: 28005191 doi:10.1007/s40279-016-0666-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Bonfim TR, Jansen Paccola CA, Barela JA. Proprioceptive and behavior impairments in individuals with anterior cruciate ligament reconstructed knees. Arch Phys Med Rehabil. 2003;84(8):12171223. PubMed ID: 12917863 doi:10.1016/S0003-9993(03)00147-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Relph N, Herrington L, Tyson S. The effects of ACL injury on knee proprioception: a meta-analysis. Physiotherapy. 2014;100(3):187195. PubMed ID: 24690442 doi:10.1016/j.physio.2013.11.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    San Martín-Mohr C, Cristi-Sánchez I, Pincheira PA, Reyes A, Berral FJ, Oyarzo C. Knee sensorimotor control following anterior cruciate ligament reconstruction: a comparison between reconstruction techniques. PLoS One. 2018;13(11):e0205658. PubMed ID: 30439952 doi:10.1371/journal.pone.0205658

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Criss CR, Melton MS, Ulloa SA, et al. Rupture, reconstruction, and rehabilitation: a multi-disciplinary review of mechanisms for central nervous system adaptations following anterior cruciate ligament injury. Knee. 2021;30:7889. PubMed ID: 33873089 doi:10.1016/j.knee.2021.03.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Grooms D, Appelbaum G, Onate J. Neuroplasticity following anterior cruciate ligament injury: a framework for visual-motor training approaches in rehabilitation. J Orthop Sports Phys Ther. 2015;45(5):381393. PubMed ID: 25579692 doi:10.2519/jospt.2015.5549

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Harrison EL, Duenkel N, Dunlop R, Russell G. Evaluation of single-leg standing following anterior cruciate ligament surgery and rehabilitation. Phys Ther. 1994;74(3):245252. PubMed ID: 8115458 doi:10.1093/ptj/74.3.245

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Henriksson M, Ledin T, Good L. Postural control after anterior cruciate ligament reconstruction and functional rehabilitation. Am J Sports Med. 2001;29(3):359366. PubMed ID: 11394609 doi:10.1177/03635465010290031801

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Howells BE, Ardern CL, Webster KE. Is postural control restored following anterior cruciate ligament reconstruction? A systematic review. Knee Surg Sports Traumatol Arthrosc. 2011;19(7):11681177. PubMed ID: 21344230 doi:10.1007/s00167-011-1444-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Alonso AC, Greve JM, Camanho GL. Evaluating the center of gravity of dislocations in soccer players with and without reconstruction of the anterior cruciate ligament using a balance platform. Clinics. 2009;64(3):163170. doi:10.1590/S1807-59322009000300003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Bodkin SG, Slater LV, Norte GE, Goetschius J, Hart JM. ACL reconstructed individuals do not demonstrate deficits in postural control as measured by single-leg balance. Gait Posture. 2018;66:296299. PubMed ID: 29958793 doi:10.1016/j.gaitpost.2018.06.120

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Chmielewski TL, Wilk KE, Snyder-Mackler L. Changes in weight-bearing following injury or surgical reconstruction of the ACL: relationship to quadriceps strength and function. Gait Posture. 2002;16(1):8795. PubMed ID: 12127191 doi:10.1016/S0966-6362(01)00202-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Dauty M, Collon S, Dubois C. Change in posture control after recent knee anterior cruciate ligament reconstruction? Clin Physiol Funct Imaging. 2010;30(3):187191. PubMed ID: 20345971 doi:10.1111/j.1475-097X.2010.00926.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Denti M, Randelli P, Lo Vetere D, Moioli M, Bagnoli I, Cawley PW. Motor control performance in the lower extremity: normals vs. anterior cruciate ligament reconstructed knees 5–8 years from the index surgery. Knee Surg Sports Traumatol Arthrosc. 2000;8(5):296300. PubMed ID: 11061299 doi:10.1007/s001670000136

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Hoffman M, Schrader J, Koceja D. An investigation of postural control in postoperative anterior cruciate ligament reconstruction patients. J Athl Train. 1999;34(2):130136. PubMed ID: 16558555

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Mohammadi F, Salavati M, Akhbari B, Mazaheri M, Khorrami M, Negahban H. Static and dynamic postural control in competitive athletes after anterior cruciate ligament reconstruction and controls. Knee Surg Sports Traumatol Arthrosc. 2012;20(8):16031610. PubMed ID: 22124847 doi:10.1007/s00167-011-1806-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Shiraishi M, Mizuta H, Kubota K, Otsuka Y, Nagamoto N, Takagi K. Stabilometric assessment in the anterior cruciate ligament-reconstructed knee. Clin J Sport Med. 1996;6(1):3239. PubMed ID: 8925363 doi:10.1097/00042752-199601000-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Zouita Ben Moussa A, Zouita S, Dziri C, Ben Salah FZ. Single-leg assessment of postural stability and knee functional outcome two years after anterior cruciate ligament reconstruction. Ann Phys Rehabil Med. 2009;52(6):475484. PubMed ID: 19477706 doi:10.1016/j.rehab.2009.02.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Colby SM, Hintermeister RA, Torry MR, Steadman JR. Lower limb stability with ACL impairment. J Orthop Sports Phys Ther. 1999;29(8):444454. PubMed ID: 10444734 doi:10.2519/jospt.1999.29.8.444

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Riemann BL, Caggiano NA, Lepart SM. Examination of a clinical method of assessing postural control during a functional performance task. J Sport Rehabil. 1999;8(3):171183. doi:10.1123/jsr.8.3.171

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Sell TC. An examination, correlation, and comparison of static and dynamic measures of postural stability in healthy, physically active adults. Phys Ther Sport. 2012;13(2):8086. PubMed ID: 22498148 doi:10.1016/j.ptsp.2011.06.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Heinert B, Willett K, Kernozek TW. Influence of anterior cruciate ligament reconstruction on dynamic postural control. Int J Sports Phys Ther. 2018;13(3):432440. PubMed ID: 30038829 doi:10.26603/ijspt20180432

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Webster KA, Gribble PA. Time to stabilization of anterior cruciate ligament-reconstructed versus healthy knees in National Collegiate Athletic Association Division I female athletes. J Athl Train. 2010;45(6):580585. PubMed ID: 21062181 doi:10.4085/1062-6050-45.6.580

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Howells BE, Clark RA, Ardern CL, et al. The assessment of postural control and the influence of a secondary task in people with anterior cruciate ligament reconstructed knees using a Nintendo Wii Balance Board. Br J Sports Med. 2013;47(14):914919. PubMed ID: 23268373 doi:10.1136/bjsports-2012-091525

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Rambaud AJM, Semay B, Samozino P, et al. Criteria for return to sport after anterior cruciate ligament reconstruction with lower reinjury risk (CR’STAL study): protocol for a prospective observational study in France. BMJ Open. 2017;7(6):e015087. PubMed ID: 28667211 doi:10.1136/bmjopen-2016-015087

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Collins NJ, Misra D, Felson DT, Crossley KM, Roos EM. Measures of knee function: International Knee Documentation Committee (IKDC) Subjective Knee Evaluation Form, Knee Injury and Osteoarthritis Outcome Score (KOOS), Knee Injury and Osteoarthritis Outcome Score Physical Function Short Form (KOOS-PS), Knee Outcome Survey Activities of Daily Living Scale (KOS-ADL), Lysholm Knee Scoring Scale, Oxford Knee Score (OKS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Activity Rating Scale (ARS), and Tegner Activity Score (TAS). Arthritis Care Res. 2011;63(suppl 1):S208S228. doi:10.1002/acr.20632

    • Search Google Scholar
    • Export Citation
  • 44.

    Sloot LH, van der Krogt MM, Harlaar J. Self-paced versus fixed speed treadmill walking. Gait Posture. 2014;39(1):478484. PubMed ID: 24055003 doi:10.1016/j.gaitpost.2013.08.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Grooms DR, Chaudhari A, Page SJ, Nichols-Larsen DS, Onate JA. Visual-motor control of drop landing after anterior cruciate ligament reconstruction. J Athl Train. 2018;53(5):486496. PubMed ID: 29749751 doi:10.4085/1062-6050-178-16

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Ross SE, Guskiewicz KM. Time to stabilization: a method for analyzing dynamic postural stability. Athl Ther Today. 2003;8(3):3739. doi:10.1123/att.8.3.37

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Wikstrom EA, Tillman MD, Smith AN, Borsa PA. A new force-plate technology measure of dynamic postural stability: the dynamic postural stability index. J Athl Train. 2005;40(4):305309. PubMed ID: 16404452

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Head PL, Kasser R, Appling S, Cappaert T, Singhal K, Zucker-Levin A. Anterior cruciate ligament reconstruction and dynamic stability at time of release for return to sport. Phys Ther Sport. 2019;38:8086. PubMed ID: 31071659 doi:10.1016/j.ptsp.2019.04.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Lehmann T, Paschen L, Baumeister J. Single-leg assessment of postural stability after anterior cruciate ligament injury: a systematic review and meta-analysis. Sports Med Open. 2017;3(1):32. PubMed ID: 28853022 doi:10.1186/s40798-017-0100-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Liu K, Heise GD. The effect of jump-landing directions on dynamic stability. J Appl Biomech. 2013;29(5):634638. PubMed ID: 23182979 doi:10.1123/jab.29.5.634

  • 51.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Earlbaum Associates; 1988.

  • 52.

    Grooms DR, Page SJ, Onate JA. Brain activation for knee movement measured days before second anterior cruciate ligament injury: neuroimaging in musculoskeletal medicine. J Athl Train. 2015;50(10):10051010. PubMed ID: 26509775 doi:10.4085/1062-6050-50.10.02

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Bodkin SG, Hertel J, Hart JM. Gaze accuracy differences during single-leg balance following anterior cruciate ligament reconstruction. J Sport Rehabil. 2021;30(5):737743. PubMed ID: 33503587 doi:10.1123/jsr.2020-0287

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Abrams GD, Harris JD, Gupta AK, et al. Functional performance testing after anterior cruciate ligament reconstruction: a systematic review. Orthop J Sports Med. 2014;2(1):2325967113518305. PubMed ID: 26535266 doi:10.1177/2325967113518305

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Roewer BD, Di Stasi SL, Snyder-Mackler L. Quadriceps strength and weight acceptance strategies continue to improve two years after anterior cruciate ligament reconstruction. J Biomech. 2011;44(10):19481953. PubMed ID: 21592482 doi:10.1016/j.jbiomech.2011.04.037

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Krosshaug T, Slauterbeck JR, Engebretsen L, Bahr R. Biomechanical analysis of anterior cruciate ligament injury mechanisms: three-dimensional motion reconstruction from video sequences. Scand J Med Sci Sports. 2007;17(5):508519. PubMed ID: 17181770 doi:10.1111/j.1600-0838.2006.00558.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Wikstrom EA, Fournier KA, McKeon PO. Postural control differs between those with and without chronic ankle instability. Gait Posture. 2010;32(1):8286. PubMed ID: 20418101 doi:10.1016/j.gaitpost.2010.03.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Culvenor AG, Alexander BC, Clark RA, et al. Dynamic single-leg postural control is impaired bilaterally following anterior cruciate ligament reconstruction: implications for reinjury risk. J Orthop Sports Phys Ther. 2016;46(5):357364. PubMed ID: 26999412 doi:10.2519/jospt.2016.6305

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 846 846 425
Full Text Views 21 21 10
PDF Downloads 36 36 15