Optimized Simulation of Upper Body Timing on the Production of Bat-Head Speed in Baseball Batting

in Journal of Applied Biomechanics
View More View Less
  • 1 Ibaraki Prefectural University of Health Sciences
  • | 2 Loughborough University
  • | 3 University of Tsukuba
Restricted access

The objectives of this study were to (1) investigate the effect of the timing of the upper body joint motions in baseball batting on the bat-head speed and (2) develop and evaluate a simulation model inputting the individual hand forces on the bat. Twenty-three male collegiate baseball players performed tee batting set at waist height. A 10-segment angle-driven simulation model consisting of a bat and upper body was driven using the coordinate data of the standard motion. Performance optimization was conducted by changing the timing of the joint angle time histories of the upper body to increase the maximum bat-head speed. The optimization simultaneously estimated the individual hand forces by polynomial approximation dependent on the total bat forces to assess joint torques of the upper body. The bat-head speed increased to 39.2 m/s from 35.6 m/s, and the optimized timings were characterized by the earlier timing of the barrel-side elbow supination, wrist radial flexion, torso right lateral flexion, and the later timing of the barrel-side shoulder abduction. It is concluded that the skillful coordination of the individual joint movements for the upper body can produce a higher bat-head speed through effective sequencing of proximal to distal movements.

Ae is with the Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Ami, Ibaraki, Japan. Burke is with the School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom. Kawamura and Koike are with the Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.

Ae (aek@ipu.co.jp, kazumichi.ae@gmail.com) is corresponding author.
  • 1.

    Sawichi GS, Hubbard M, Stronge WJ. How to hit home runs: optimum baseball bat swing parameters for maximum range trajectories. Am J Phys. 2003;71(11):11521162. doi:10.1119/1.1604384

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Welch CM, Banks SA, Cook FF, Draovitch P. Hitting a baseball: a biomechanical description. J Orthop Sports Phys. 1995;22(5):193201. doi:10.2519/jospt.1995.22.5.193

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Hirashima M, Yamane K, Nakamura Y, Otsuki T. Kinetic chain of overarm throwing in terms of joint rotations revealed by induced acceleration analysis. J Biomech. 2008;41(13):28742883. PubMed ID: 18678375 doi:10.1016/j.jbiomech.2008.06.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Horiuchi G, Nakashima H, Sakurai S. Mechanical energy flow in torso during baseball toss batting [Advanced online publication May 19, 2021]. Sport Biomech. doi:10.1080/14763141.2021.1927162

    • Search Google Scholar
    • Export Citation
  • 5.

    Koike S, Ishikawa T, Willmott AP, Bezodis NE. Direct and indirect effects on joint torque inputs during an induced speed analysis of a swing motion. J Biomech. 2019;86(27):816. doi:10.1016/j.jbiomech.2019.01.032

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Koike S, Nakaya S, Mori H, Ishikawa T, Willmott AP. Modelling error distribution in the ground reaction force during an induced-acceleration analysis of running in rear-foot strikers. J Sports Sci. 2017;37(9):968979. PubMed ID: 28641036 doi:10.1080/02640414.2017.1340658

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Putnam CA. A segment interaction analysis of proximal-to-distal sequential segment motion patterns. Med Sci Sports Exerc. 1991;23(1):130144. PubMed ID: 1997807 doi:10.1249/00005768-199101000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Putnam CA. Sequential motions of body segments in striking and throwing skills: descriptions and explanations. J Biomech. 1993;26(1):125135. doi:10.1016/0021-9290(93)90084-R

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Herring RM, Chapman AE. Effect of changes in segmental values and timing of both torque and torque reversal in simulated throws. J Biomech. 1992;25(10):11731184. PubMed ID: 1400517 doi:10.1016/0021-9290(92)90073-A

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Fujii N, Hubbard M. Validation of a three-dimensional baseball pitching model. J Appl Biomech. 2002;18(2):135154. doi:10.1123/jab.18.2.135

  • 11.

    Koike S, Mimura K. Contributions of joint torques, motion-dependent term and gravity to the generation of baseball bat head speed. Procedia Eng. 2016;147:191196. doi:10.1016/j.proeng.2016.06.212

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Koike S, Mimura K. Main contributors to the baseball bat head speed considering the generating factor of motion-dependent term. Procedia Eng. 2016;147:197202. doi:10.1016/j.proeng.2016.06.213

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Koike S, Mimura K. Effective timing of exerting joint torques to obtain baseball bat head speed. Paper presented at: Proceeding of the 34th International Conference on Biomechanics in Sports. 2016; https://ojs.ub.uni-konstanz.de/cpa/article/view/6905/6200

    • Search Google Scholar
    • Export Citation
  • 14.

    Escamilla RF, Fleisig GS, DeRenne C, Taylor MK. Effects of bat grip on baseball hitting kinematics. J Appl Biomech. 2009;25(3):203209. PubMed ID: 19827469 doi:10.1123/jab.25.3.203

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Escamilla RF, Fleisig GS, DeRenne C, Taylor MK. A comparison of age level on baseball hitting kinematics. J Appl Biomech. 2009;25(3):210218. PubMed ID: 19827470 doi:10.1123/jab.25.3.210

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Dowling B, Fleisig GS. Kinematic comparison of baseball batting off of a tee among various competition levels. Sport Biomech. 2016;15(3):255269. doi:10.1080/14763141.2016.1159320

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    McIntyre DR, Pfautsch EW. A kinematic analysis of the baseball batting swings involved in opposite-field and same-field hitting. Res Q Exerc Sport. 1982;53(3):206213. doi:10.1080/02701367.1982.10609341

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Messier SP, Owen MG. Bat dynamics of female fast pitch soft ball batters. Res Q Exerc Sport. 1984;55(2):141145. doi:10.1080/02701367.1984.10608390

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Race DE. A cinematographic and mechanical analysis of the external movements involved in hitting a baseball effectively. Res Q. 1961;32:394404.

    • Search Google Scholar
    • Export Citation
  • 20.

    Ae K, Burke D, Kawamura T, Koike S. Optimisation of the upper body motion for production of the bat-head speed in baseball batting. Sport Biomech. 2020. doi:10.1080/14763141.2020.1834609

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Ae K, Koike S, Fujii N, Ae M, Kawamura T. Kinetic analysis of the lower limbs in baseball tee batting. Sport Biomech. 2017;16(3):283296. doi:10.1080/14763141.2017.1284257

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Ae K, Koike S, Fujii N, Ae M, Kawamura T, Kanahori T. A comparison of kinetics in the lower limbs between baseball tee and pitched ball batting. Hum Mov Sci. 2018;61:126134. PubMed ID: 30092394 doi:10.1016/j.humov.2018.07.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Ae K, Koike S, Kawamura T. Kinetic function of the lower limbs during baseball tee-batting motion at different hitting-point heights. Sport Biomech. 2020;19(4):452466. doi:10.1080/14763141.2018.1497195

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Koike S, Iida H, Fujii N, Kawamura T, Ae M. An instrumented bat for simultaneous measurement of forces and moments exerted by the hands during batting. Sports Eng. 2004;5(2):194200.

    • Search Google Scholar
    • Export Citation
  • 25.

    Winter DA. Biomechanics and Motor Control of Human Movement (3rd ed.). New York, NY: John Wiley & Sons; 2004.

  • 26.

    Ae M. Body segment inertia parameters for Japanese children and athletes. J Sports Sci. 1996;15:155162.

  • 27.

    Ae K, Koike S, Kawamura T. Kinetic analysis of each hand in baseball tee batting motion at different hitting point heights. Jpn J Biomech Sport Exerc. 2013;17(1):214.

    • Search Google Scholar
    • Export Citation
  • 28.

    Ae K, Koike S, Kawamura T. Kinetic analysis of individual upper limbs during baseball tee batting motion at different hitting point heights. Jpn J Phys Educ, Health & Sport Sci. 2014;59(2):431452. doi:10.5432/jjpehss.13067

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Ae M, Muraki Y, Koyama H. A biomechanical method to establish a standard motion and identify critical motion by motion variability: with examples of high jump and sprint running. Bulletin of Institute of Health and Sport Science, the University of Tsukuba. 2007;30:512.

    • Search Google Scholar
    • Export Citation
  • 30.

    Hiley MJ, Yeadon MR. Investigating optimal technique in a noisy environment: application to the upstart on uneven bars. Hum Mov Sci. 2013;32(1):181191. PubMed ID: 23266339 doi:10.1016/j.humov.2012.11.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Kane TR, Levinson DA. Dynamics: Theory and Applications. New York, NY: McGraw-Hill; 1985.

  • 32.

    Allen SJ, King MA, Yeadon MR. Is a single or double arm technique more advantageous in triple jumping?. J Biomech. 2010;43(16):31563161. PubMed ID: 20709319 doi:10.1016/j.jbiomech.2010.07.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Wilson C, King MA, Yeadon MR. Determination of subject-specific model parameters for visco-elastic elements. J Biomech. 2006;39(10):18831890. PubMed ID: 16002080 doi:10.1016/j.jbiomech.2005.05.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Yeadon MR, King MA. Evaluation of a torque driven simulation model of tumbling. J Appl Biomech. 2002;18(3):195206. doi:10.1123/jab.18.3.195

  • 35.

    Ae M. The next steps for expanding and developing sport biomechanics [Advanced online publication May 13, 2020], Sport Biomech. doi:10.1080/14763141.2020.1743745

    • Search Google Scholar
    • Export Citation
  • 36.

    McErlain-Naylor SA, King MA, Felton PJ. A Review of forward-dynamics simulation models for predicting optimal technique in maximal effort sporting movements. Appl Sci. 2021;11(4):1450. doi:10.3390/app11041450

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Washington J, Oliver G. Kinematic differences between hitting off a tee versus front toss in collegiate softball players. Int Biomech. 2018;5(1):3035. doi:10.1080/23335432.2018.1472038

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1812 1812 260
Full Text Views 36 36 0
PDF Downloads 42 42 0