Characterizing Lumbar Spine Kinematics and Kinetics During Simulated Low-Speed Rear Impact Collisions

in Journal of Applied Biomechanics

Click name to view affiliation

Kayla M. FewsterDepartment of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, ON, Canada

Search for other papers by Kayla M. Fewster in
Current site
Google Scholar
PubMed
Close
,
Jackie D. ZehrDepartment of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, ON, Canada

Search for other papers by Jackie D. Zehr in
Current site
Google Scholar
PubMed
Close
,
Chad E. GooyersDepartment of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, ON, Canada
30 Forensic Engineering, Toronto, ON, Canada

Search for other papers by Chad E. Gooyers in
Current site
Google Scholar
PubMed
Close
,
Robert J. ParkinsonDepartment of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, ON, Canada
30 Forensic Engineering, Toronto, ON, Canada

Search for other papers by Robert J. Parkinson in
Current site
Google Scholar
PubMed
Close
, and
Jack P. CallaghanDepartment of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, ON, Canada

Search for other papers by Jack P. Callaghan in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Background: Recent work has demonstrated that low back pain is a common complaint following low-speed collisions. Despite frequent pain reporting, no studies involving human volunteers have been completed to examine the exposures in the lumbar spine during low-speed rear impact collisions. Methods: Twenty-four participants were recruited and a custom-built crash sled simulated rear impact collisions, with a change in velocity of 8 km/h. Randomized collisions were completed with and without lumbar support. Inverse dynamics analyses were conducted, and outputs were used to generate estimates of peak L4/L5 joint compression and shear. Results: Average (SD) peak L4/L5 compression and shear reaction forces were not significantly different without lumbar support (compression = 498.22 N [178.0 N]; shear = 302.2 N [98.5 N]) compared to with lumbar support (compression = 484.5 N [151.1 N]; shear = 291.3 N [176.8 N]). Lumbar flexion angle at the time of peak shear was 36° (12°) without and 33° (11°) with lumbar support. Conclusion: Overall, the estimated reaction forces were 14% and 30% of existing National Institute of Occupational Safety and Health occupational exposure limits for compression and shear during repeated lifting, respectively. Findings also demonstrate that, during a laboratory collision simulation, lumbar support does not significantly influence the total estimated L4/L5 joint reaction force.

Callaghan (jack.callaghan@uwaterloo.ca) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Berglund A, Alfredsson L, Jensen I, Cassidy JD, Nygren Å. The association between exposure to a rear-end collision and future health complaints. J Clin Epidemiol. 2001;54:851856.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Gates D, Bridges A, Welch TDJ, Lam T, Scher I. Lumbar Loads in Low to Moderate Speed Rear Impacts. SAE Technical Paper 2010-01-0141; 2010. doi:10.4271/2010-01-0141

    • Search Google Scholar
    • Export Citation
  • 3.

    Gushue DL, Probust BW, Benda B, et al. Effects of velocity and occupant sitting position on kinematics and kinetics of the lumbar spine during simulated low-speed rear impacts. ASSE Professional Development Conference and Exposition. June 2006. Seattle, WA.

    • Search Google Scholar
    • Export Citation
  • 4.

    Fast A, Sosner J, Begeman P, Thomas MA, Chiu T. Lumbar spinal strains associated with whiplash injury: a cadaveric study. Am J Phys Med Rehabil. 2002;81(9):645650. doi:10.1097/01.CCM.0000026917.24522.F4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Toney-Bolger M, Campbell I, Miller B, Davis M, Fisher J. Evaluation of Occupant Loading in Low- to Moderate-Speed Frontal and Rear-End Motor Vehicle Collisions. SAE Technical Paper 2019-01-1220; 2019. doi:10.4271/2019-01-1220

    • Search Google Scholar
    • Export Citation
  • 6.

    Gooyers CE, Beach TAC, Frost DM, Howarth SJ, Callaghan JP. Identifying interactive effects of task demands in lifting on estimates of in vivo low back joint loads. Appl Ergon. 2018;67:203210. doi:10.1016/j.apergo.2017.10.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Marras WS, Davis KG, Ferguson SA, Lucas BR, Gupta P. Spine loading characteristics of patients with low back pain compared with asymptomatic individuals. Spine. 2001;26(23):25662574. doi:10.1097/00007632-200112010-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    McGill S, Norman R, Yingling V, Wells R, Neumann W. Shear Happens! Suggested guidelines for ergonomists to reduce the risk of low back injury from shear loading. Presented at the 30th Annual Conference of Human Factors Association of Canada, Mississauga, Ontario, Canada. 1998.

    • Search Google Scholar
    • Export Citation
  • 9.

    NIOSH 1981. Work Practices Guide for Manual Lifting. U.S. Department of Health and Human Services National Institute for Occupational Safety and Health; 1981.

    • Search Google Scholar
    • Export Citation
  • 10.

    Welch TDJ, Bridges AW, Gates DH, et al. An evaluation of the BioRID II and Hybrid III during low- and moderate-speed rear impact. Methods. 2010;3(1):704733. doi:10.4271/2010-01-1031

    • Search Google Scholar
    • Export Citation
  • 11.

    Beach TAC, McDonald KA, Coke SK, Callaghan JP. Gender responses to automobile and office sitting—influence of hip, hamstring, and low-back flexibility on seated postures. Ergon Open J. 2008;1(1):19. doi:10.2174/1875934300801010001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Kolich M. Automobile seat comfort: occupant preferences vs. anthropometric accommodation. Appl Ergon. 2003;34(2):177184. doi:10.1016/S0003-6870(02)00142-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    De Carvalho DE, Callaghan JP. Influence of automobile seat lumbar support prominence on spine and pelvic postures: a radiological investigation. Appl Ergon. 2012;43(5):876882. doi:10.1016/j.apergo.2011.12.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    McGill SM, Brown S. Creep response of the lumbar spine to prolonged full flexion. Clin Biomech. 1992;7(1):4346. doi:10.1016/0268-0033(92)90007-Q

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Solomonow M, Baratta RV, Banks A, Freudenberger C, Zhou BH. Flexion-relaxation response to static lumbar flexion in males and females. Clin Biomech. 2003;18(4):273279. doi:10.1016/S0268-0033(03)00024-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Twomey L, Taylor J. Flexion creep deformation and hysteresis in the lumbar vertebral column. Spine. 1982;7(2):116122. doi:10.1097/00007632-198203000-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine. 1999;24(8):755762. doi:10.1097/00007632-199904150-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Fryer JCJ, Quon JA, Smith FW. Magnetic resonance imaging and stadiometric assessment of the lumbar discs after sitting and chair-care decompression exercise: a pilot study. Spine J. 2010;10(4):297305. doi:10.1016/j.spinee.2010.01.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    O’Sullivan K, O’Dea P, Dankaerts W, O’Sullivan P, Clifford A, O’Sullivan L. Neutral lumbar spine sitting posture in pain-free subjects. Man Ther. 2010;15(6):557561. doi:10.1016/j.math.2010.06.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Andersson BJ, Murphy RW, Ortengren R, Nachemson AL. The influence of backrest inclination and lumbar support on lumbar lordosis. Spine. 1979;4(1):5258. doi:10.1097/00007632-197901000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    De Carvalho DE, Callaghan JP. Spine posture and discomfort during prolonged simulated driving with self-selected lumbar support prominence. Hum Factors J Hum Factors Ergon Soc. 2015;57(6):976987. doi:10.1177/0018720815584866

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Andersson BJ, Ortengren R, Nachemson A, Elfstrom G. Lumbar disc pressure and myoelectric back muscle activity during sitting. IV. Studies on a car driver’s seat. Scand J Rehabil Med. 1974;6(3):128133. doi:10.1016/0003-6870(76)90025-9

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kingma I, van Dieën JH. Static and dynamic postural loadings during computer work in females: sitting on an office chair versus sitting on an exercise ball. Appl Ergon. 2009;40(2):199205. doi:10.1016/j.apergo.2008.04.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Gunning JL, Callaghan JP, McGill SM. Spinal posture and prior loading history modulate compressive strength and type of failure in the spine: a biomechanical study using a porcine cervical spine model. Clin Biomech. 2001;16(6):471480. doi:10.1016/S0268-0033(01)00032-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Gordon CC, Blackwell CL, Bradtmiller B, et al. 2012 Anthropometric Survey of U.S. Army Personnel: methods and summary statistics (No. NATICK/TR-15/007). Army Natick Soldier Research Development and Engineering Center, MA. 2014.

    • Search Google Scholar
    • Export Citation
  • 26.

    Barrett JM, Fewster KM, Callaghan JP. Model-aided design of a rear-impact collision testing system for in-vivo investigations. J Biomech Eng. 2021;143(9):094502.

  • 27.

    Siegmund GP, King DJ, Lawrence JM, Wheeler JB, Brault JR, Smith TA. Head/neck kinematic response of human subjects in low-speed rear-end collisions. Stapp Car Crash J. 1997:357385. doi:10.4271/973341

    • Search Google Scholar
    • Export Citation
  • 28.

    Arbogast KB, Mathews EA, Seacrist T, et al. The effect of pretensioning and age on torso rollout in restrained human volunteers in far-side lateral and oblique loading. Stapp Car Crash J. 2012;56:443467. doi:10.1556/AAlim.2015.0002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Brault JR, Wheeler JB, Siegmund GP, Brault EJ. Clinical response of human subjects to rear-end automobile collisions. Arch Phys Med Rehabil. 1998;79(1):7280.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Insurance Bureau of Canada. Report on Head Restraint Positioning. 2002. http://www.ibc.ca

  • 31.

    Fewster KM, Viggiani D, Gooyers CE, Parkinson RJ, Callaghan JP. Characterizing trunk muscle activations during simulated low-speed rear impact collisions. Traffic Inj Prev. 2019;20(3):314319. doi:10.1080/15389588.2019.1579317

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Howarth SJ, Callaghan JP. The rule of 1s for padding kinematic data prior to digital filtering: influence of sampling and filter cutoff frequencies. J Electromyogr Kinesiol. 2009;9(5):875881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Smith G. Padding point extrapolation techniques for the butterworth digital filter. J Biomech. 1989;22(8–9):967971.

  • 34.

    Bisseling RW, Hof AL. Handling of impact forces in inverse dynamics. J Biomech. 2006;39(13):24382444. doi:10.1016/j.jbiomech.2005.07.021

  • 35.

    Society of Automotive Engineers. Instrumentation for impact test. 1995;Warrendale, PA: SAE J211/1.

  • 36.

    Wu G, Siegler S, Allard P, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech. 2002;35(4):543548. doi:10.1016/S0021-9290(01)00222-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Kingston DC, Acker SM. Thigh-calf contact parameters for six high knee flexion postures: onset, maximum angle, total force, contact area, and center of force. J Biomech. 2018;67:4654. doi:10.1016/j.jbiomech.2017.11.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Zehr JD, Fewster KM, Gooyers CE, Parkinson RJ, Callaghan JP. Partitioning the total seatback reaction force amongst the lumbar spine motion segments during simulated rear-impact collisions. Int J Occup Saf Ergon. 2021;27(2):613619. doi:10.1080/10803548.2019.1617455

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Beach TAC, Frost DM, Callaghan JP. FMS scores and low-back loading during lifting—whole-body movement screening as an ergonomic tool? Appl Ergon. 2014;45(3):482489. doi:10.1016/j.apergo.2013.06.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Adams MA, Hutton WC. The effect of fatigue on the lumbar intervertebral disc. J Bone Joint Surg Br. 1983;65(2):199203.

  • 41.

    Callaghan JP, McGill SM. Intervertebral disc herniation: studies on a porcine model exposed to highly repetitive flexion/extension motion with compressive force. Clin Biomech. 2001;16(1):2837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Adams MA, Dolan P, Hutton WC. The lumbar spine in backward bending. Spine. 1988;13(9):10191026. doi:10.1097/00007632-198809000-00009

  • 43.

    Gallagher S, Marras WS. Tolerance of the lumbar spine to shear: a review and recommended exposure limits. Clin Biomech. 2012;27(10):973978. doi:10.1016/j.clinbiomech.2012.08.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Adams MA, Green TP, Dolan P. The strength in anterior bending of lumbar intervertebral discs. Spine. 1994;19(19):21972203. doi:10.1097/00007632-199410000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Norman R, Wells R, Neumann P, et al. A comparison of peak vs cumulative physical work exposure risk factors for the reporting of low back pain in the automotive industry. Clin Biomech. 1998;13(8):561573. doi:10.1016/S0268-0033(98)00020-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Yingling VR, McGill SM. Anterior shear of spinal motion segments. Kinematics, kinetics, and resultant injuries observed in a porcine model. Spine. 1999;24(18):18821889. doi:10.1097/00007632-199909150-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Howarth SJ, Callaghan JP. Compressive force magnitude and intervertebral joint flexion/extension angle influence shear failure force magnitude in the porcine cervical spine. J Biomech. 2012;45(3):484490. doi:10.1016/j.jbiomech.2011.11.051

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Gallagher KM, Howarth SJ, Callaghan JP. Effects of anterior shear displacement rate on the structural properties of the porcine cervical spine. J Biomech Eng. 2010;132(9):091004. doi:10.1115/1.4001885

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Brinckmann P, Biggemann M, Hilweg D. Fatigue fracture of human lumbar vertebrae. Clin Biomech. 1988;3(suppl 1):S1S23. doi:10.1016/S0268-0033(88)80001-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Hutton WC, Cyron BM, Stott JR. The compressive strength of lumbar vertebrae. J Anat. 1979;129(pt 4):753758.

  • 51.

    Cripton P, Berleman U, Visarius H. Response of the lumbar spine due to shear loading. Injury Prevention through Biomechanics Symposium; 1995:111126.

    • Search Google Scholar
    • Export Citation
  • 52.

    Jäger M. Extended compilation of autopsy-material measurements on lumbar ultimate compressive strength for deriving reference values in ergonomic work design: the revised Dortmund recommendations. EXCLI J. 2018;17:362385. doi:10.17179/excli2018-1206

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Cyron BM, Hutton WC. The fatigue strength of the lumbar neural arch in spondylolysis. J Bone Joint Surg Br. 1978;60-B(2):234238. doi:10.1302/0301-620x.60b2.659472

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    De Carvalho DE, Callaghan JP. Passive stiffness changes in the lumbar spine and effect of gender during prolonged simulated driving. Int J Ind Ergon. 2011;41(6):617624. doi:10.1016/j.ergon.2011.08.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Magee DJ. Orthopedic Physical Assessment Enhanced Edition. J Pediatr Orthop. 2006:7(6):734. doi:10.1097/01241398-198711000-00022

All Time Past Year Past 30 Days
Abstract Views 3095 2792 25
Full Text Views 102 68 1
PDF Downloads 156 109 2