Effect of Age on Thoracic, Lumbar, and Pelvis Coordination During Trunk Flexion and Extension

in Journal of Applied Biomechanics
View More View Less
  • 1 Department of Human Movement Science, Oakland University, Rochester, MI, USA
  • | 2 Department of Physical Therapy, Ithaca College, Ithaca, NY, USA
  • | 3 Elite Performance and Rehabilitation Center, Santa Barbara, CA, USA
  • | 4 Department of Health and Human Performance, Texas State University, San Marcos, TX, USA
Restricted access

The purpose of this study was to investigate normative and age-related differences in trunk and pelvis kinematics and intersegmental coordination during sagittal plane flexion–extension. Trunk and pelvis kinematics were recorded while 76 participants performed a maximal range of motion task in the sagittal plane. Cross-correlation was calculated to determine the phase lag between adjacent segment motion, and coupling angles were calculated using vector coding and classified into one of 4 coordination patterns: in-phase, antiphase, superior, and inferior phase. A 2-way mixed-model multivariate analysis of variance was used to compare lumbar spine and pelvis angular kinematics, phase lags, and cross-correlation coefficients between groups. Young participants exhibited greater trunk range of motion compared with middle-aged participants. The lumbar spine and pelvis were predominantly rotating with minimum phase lag during flexion and extension movement for both age groups, and differences in coordination between the groups were seen during hyperextension and return to upright position. In conclusion, middle-aged adults displayed lower range of motion but maintained similar movement patterns to young adults, which could be attributed to protective mechanisms. Healthy lumbar and pelvis movement patterns are important to understand and need to be quantified as a baseline, which can be used to develop rehabilitation protocols for individuals with spinal ailments.

Kakar (kakar@oakland.edu) is corresponding author.

  • 1.

    Granata KP, Sanford AH. Lumbar–pelvic coordination is influenced by lifting task parameters. Spine. 2000;25(11):14131418. PubMed ID: 10828924 doi:10.1097/00007632-200006010-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Kim M-H, Yi C-H, Kwon O-Y, et al. Comparison of lumbopelvic rhythm and flexion-relaxation response between 2 different low back pain subtypes. Spine. 2013;38(15):12601267. PubMed ID: 23514875 doi:10.1097/BRS.0b013e318291b502

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Tafazzol A, Arjmand N, Shirazi-Adl A, Parnianpour M. Lumbopelvic rhythm during forward and backward sagittal trunk rotations: combined in vivo measurement with inertial tracking device and biomechanical modeling. Clin Biomech. 2014;29(1):713. PubMed ID: 24246115 doi:10.1016/j.clinbiomech.2013.10.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Pries E, Dreischarf M, Bashkuev M, Putzier M, Schmidt H. The effects of age and gender on the lumbopelvic rhythm in the sagittal plane in 309 subjects. J Biomech. 2015;48(12):30803087. PubMed ID: 26294355 doi:10.1016/j.jbiomech.2015.07.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Zhou J, Ning X, Fathallah F. Differences in lumbopelvic rhythm between trunk flexion and extension. Clin Biomech. 2016;32:274279. PubMed ID: 26577865 doi:10.1016/j.clinbiomech.2015.10.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Shojaei I, Salt EG, Hooker Q, Van Dillen LR, Bazrgari B. Comparison of lumbo-pelvic kinematics during trunk forward bending and backward return between patients with acute low back pain and asymptomatic controls. Clin Biomech. 2017;41:6671. PubMed ID: 27992778 doi:10.1016/j.clinbiomech.2016.12.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Hoogendoorn WE, Bongers PM, de Vet HCW, et al. Flexion and rotation of the trunk and lifting at work are risk factors for low back pain: results of a prospective cohort study. Spine. 2000;25(23):30873092. PubMed ID: 11145822 doi:10.1097/00007632-200012010-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Ignasiak D, Rüeger A, Ferguson SJ. Multi-segmental thoracic spine kinematics measured dynamically in the young and elderly during flexion. Hum Mov Sci. 2017;54:230239. PubMed ID: 28535435 doi:10.1016/j.humov.2017.05.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Zehr JD, Howarth SJ, Beach TAC. Using relative phase analyses and vector coding to quantify Pelvis-Thorax coordination during lifting—A methodological investigation. J Electromyogr Kinesiol. 2018;39:104113.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Heneghan NR, Rushton A. Understanding why the thoracic region is the ‘Cinderella’ region of the spine. Man Ther. 2016;21:274276. PubMed ID: 26189592 doi:10.1016/j.math.2015.06.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Sueki DG, Cleland JA, Wainner RS. A regional interdependence model of musculoskeletal dysfunction: research, mechanisms, and clinical implications. J Man Manip Ther. 2013;21(2):90102. PubMed ID: 24421619 doi:10.1179/2042618612Y.0000000027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Schinkel-Ivy A, Drake JDM. Interaction between thoracic movement and lumbar spine muscle activation patterns in young adults asymptomatic for low back pain: a cross-sectional study. J Manipulative Physiol Ther. 2019;42(6):461469. PubMed ID: 31337511 doi:10.1016/j.jmpt.2018.11.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    McGill SM, Grenier S, Kavcic N, Cholewicki J. Coordination of muscle activity to assure stability of the lumbar spine. J Electromyogr Kinesiol. 2003;13(4):353359. PubMed ID: 12832165 doi:10.1016/S1050-6411(03)00043-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Schinkel-Ivy A, Nairn BC, Drake JDM. Investigation of trunk muscle co-contraction and its association with low back pain development during prolonged sitting. J Electromyogr Kinesiol. 2013;23(4):778786. PubMed ID: 23489715 doi:10.1016/j.jelekin.2013.02.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Crosbie J, Nascimento DP, Filho RFN, Ferreira P. Do people with recurrent back pain constrain spinal motion during seated horizontal and downward reaching? Clin Biomech. 2013;28(8):866872. PubMed ID: 24067874 doi:10.1016/j.clinbiomech.2013.09.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Christe G, Redhead L, Legrand T, Jolles BM, Favre J. Multi-segment analysis of spinal kinematics during sit-to-stand in patients with chronic low back pain. J Biomech. 2016;49(10):20602067. PubMed ID: 27262182 doi:10.1016/j.jbiomech.2016.05.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hainline B. Low back injury. Clin Sports Med. 1995;14(1):241265. PubMed ID: 7712553

  • 18.

    Quinlan E, Reinke T, Bogar WC. Spinous process apophysitis: a cause of low back pain following repetitive hyperextension in an adolescent female dancer. J Dance Med Sci. 2013;17(4):170174. PubMed ID: 24565333 doi:10.12678/1089-313X.17.4.170

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Intolo P, Milosavljevic S, Baxter DG, Carman AB, Pal P, Munn J. The effect of age on lumbar range of motion: a systematic review. Man Ther. 2009;14(6):596604. PubMed ID: 19729332 doi:10.1016/j.math.2009.08.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Temprado J, Della-Grasta M, Farrell M, Laurent M. A novice-expert comparison of (intra-limb) coordination subserving the volleyball serve. Hum Mov Sci. 1997;16(5):653676. doi:10.1016/S0167-9457(97)00014-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Chang R, Van Emmerik R, Hamill J. Quantifying rearfoot–forefoot coordination in human walking. J Biomech. 2008;41(14):31013105. PubMed ID: 18778823 doi:10.1016/j.jbiomech.2008.07.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Needham RA, Naemi R, Chockalingam N. A new coordination pattern classification to assess gait kinematics when utilising a modified vector coding technique. J Biomech. 2015;48(12):35063511. PubMed ID: 26303167 doi:10.1016/j.jbiomech.2015.07.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Li Y, Kakar RS, Walker MA, et al. Intratrunk coordination during high-effort treadmill running in individuals with spinal fusion for adolescent idiopathic scoliosis. J Appl Biomech. 2017;33(6):437445. PubMed ID: 28657839 doi:10.1123/jab.2017-0085

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Needham R, Naemi R, Chockalingam N. Quantifying lumbar–pelvis coordination during gait using a modified vector coding technique. J Biomech. 2014;47(5):10201026. PubMed ID: 24485511 doi:10.1016/j.jbiomech.2013.12.032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Vazirian M. Age-related differences in the timing aspect of lumbopelvic rhythm during trunk motion in the sagittal plane. Hum Mov Sci. 2017;51:18. PubMed ID: 27814563

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kienbacher T, Paul B, Habenicht R, et al. Age and gender related neuromuscular changes in trunk flexion-extension. J NeuroEngineering Rehabil. 2015;12(1):3. doi:10.1186/1743-0003-12-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Mäder U, Martin BW, Schutz Y, Marti B. Validity of four short physical activity questionnaires in middle-aged persons. Med Sci Sports Exerc. 2006;38(7):12551266. PubMed ID: 16826022 doi:10.1249/01.mss.0000227310.18902.28

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Dinger MK, Behrens TK, Han JL. Validity and reliability of the international physical activity questionnaire in college students. Am J Health Educ. 2006;37(6):337343. doi:10.1080/19325037.2006.10598924

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Wu G, Siegler S, Allard P, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech. 2002;35(4):543548. PubMed ID: 11934426 doi:10.1016/S0021-9290(01)00222-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Bell AL, Brand RA, Pedersen DR. Prediction of hip joint centre location from external landmarks. Hum Mov Sci. 1989;8(1):316. doi:10.1016/0167-9457(89)90020-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Kakar RS, Li Y, Brown CN, Kim SH, Oswald TS, Simpson KJ. Spine kinematics exhibited during the stop-jump by physically active individuals with adolescent idiopathic scoliosis and spinal fusion. Spine J. 2018;18(1):155163. PubMed ID: 28964824 doi:10.1016/j.spinee.2017.08.221

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Kakar RS, Li Y, Brown CN, Oswald TS, Simpson KJ. Spine and lower extremity kinematics exhibited during running by adolescent idiopathic scoliosis patients with spinal fusion. Spine Deform. 2019;7(2):254261. PubMed ID: 30660219 doi:10.1016/j.jspd.2018.08.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Wong TKT, Lee RYW. Effects of low back pain on the relationship between the movements of the lumbar spine and hip. Hum Mov Sci. 2004;23(1):2134. PubMed ID: 15201039 doi:10.1016/j.humov.2004.03.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Gomez T, Beach G, Cooke C, Hrudey W, Goyert P. Normative database for trunk range of motion, strength, velocity, and endurance with the isostation B-200 lumbar dynamometer. Spine. 1991;16(1):1521. PubMed ID: 1825892

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Doriot N, Wang X. Effects of age and gender on maximum voluntary range of motion of the upper body joints. Ergonomics. 2006;49(3):269281. PubMed ID: 16540439 doi:10.1080/00140130500489873

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Klein DA, Stone WJ, Phillips WT, Gangi J, Hartman S. PNF training and physical function in assisted-living older adults. J Aging Phys Act. 2002;10(4):476488. doi:10.1123/japa.10.4.476

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Zakas A, Balaska P, Grammatikopoulou MG, Zakas N, Vergou A. Acute effects of stretching duration on the range of motion of elderly women. J Bodyw Mov Ther. 2005;9(4):270276. doi:10.1016/j.jbmt.2004.10.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Laird RA, Gilbert J, Kent P, Keating JL. Comparing lumbo-pelvic kinematics in people with and without back pain: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2014;15(1):229. doi:10.1186/1471-2474-15-229

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Arjmand N, Shirazi-Adl A. Model and in vivo studies on human trunk load partitioning and stability in isometric forward flexions. J Biomech. 2006;39(3):510521. PubMed ID: 16389091 doi:10.1016/j.jbiomech.2004.11.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Brown RT, Diaz-Ramirez LG, Boscardin WJ, Lee SJ, Steinman MA. Functional impairment and decline in middle age: a cohort study. Ann Intern Med. 2017;167(11):761. PubMed ID: 29132150 doi:10.7326/M17-0496

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Veldpaus FE, Woltring HJ, Dortmans LJMG. A least-square algorithm for the equiform transformation from spatial marker co-ordinates. J Biomechanics. 1988;21(1):4554.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 161 161 161
Full Text Views 15 15 15
PDF Downloads 20 20 20