Head Kinematics in Youth Ice Hockey by Player Speed and Impact Direction

in Journal of Applied Biomechanics
View More View Less
  • 1 Department of Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC, USA
  • | 2 LeTourneau University, Longview, TX, USA
  • | 3 Virginia Tech—Wake Forest University School of Biomedical Engineering and Sciences, Winston Salem, NC, USA
  • | 4 Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston Salem, NC, USA
Restricted access

Hockey is a fast-paced sport known for body checking, or intentional collisions used to separate opponents from the puck. Exposure to these impacts is concerning, as evidence suggests head impact exposure (HIE), even if noninjurious, can cause long-term brain changes. Currently, there is limited understanding of the effect of impact direction and collision speed on HIE. Video analysis was used to determine speed and direction for 162 collisions from 13 youth athletes. These data were paired with head kinematic data collected with an instrumented mouthpiece. Relationships between peak resultant head kinematics and speeds were evaluated with linear regression. Mean athlete speeds and relative velocity between athletes ranged from 2.05 to 2.76 m/s. Mean peak resultant linear acceleration, rotational velocity, and rotational acceleration were 13.1 g, 10.5 rad/s, and 1112 rad/s2, respectively. Significant relationships between speeds and head kinematics emerged when stratified by contact characteristics. HIE also varied by direction of collision; most collisions occurred in the forward-oblique (ie, offset from center) direction; frontal collisions had the greatest magnitude peak kinematics. These findings indicate that HIE in youth hockey is influenced by speed and direction of impact. This study may inform future strategies to reduce the severity of HIE in hockey.

Swenson (aswenson@wakehealth.edu) is corresponding author.

  • 1.

    International Ice Hockey Federation. Survey of players. 2019.https://www.iihf.com/en/static/5324/survey-of-players.

  • 2.

    USA Hockey. Checking the right way for youth hockey. 2020. https://cdn2.sportngin.com/attachments/document/0042/2205/Checking_Manual_20_FINAL.pdf.

    • Search Google Scholar
    • Export Citation
  • 3.

    Mihalik JP, Wasserman EB, Teel EF, Marshall SW. Head impact biomechanics differ between girls and boys youth ice hockey players. Ann Biomed Eng. 2019;48(1):104111. PubMed ID: 31435751 doi:10.1007/s10439-019-02343-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Mihalik JP, Greenwald RM, Blackburn JT, Cantu RC, Marshall SW, Guskiewicz KM. Effect of infraction type on head impact severity in youth ice hockey. Med Sci Sports Exerc. 2010;42(8):14311438. PubMed ID: 20139779 doi:10.1249/MSS.0b013e3181d2521a

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Mihalik JP, Guskiewicz KM, Marshall SW, Blackburn JT, Cantu RC, Greenwald RM. Head impact biomechanics in youth hockey: comparisons across playing position, event types, and impact locations. Ann Biomed Eng. 2012;40(1):141149. PubMed ID: 22012083 doi:10.1007/s10439-011-0405-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Schmidt JD, Pierce AF, Guskiewicz KM, Register-Mihalik JK, Pamukoff DN, Mihalik JP. Safe-play knowledge, aggression, and head-impact biomechanics in adolescent ice hockey players. J Athl Train. 2016;51(5):366372. PubMed ID: 27111585 doi:10.4085/1062-6050-51.5.04

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Reed N, Taha T, Keightley M, et al. Measurement of head impacts in youth ice hockey players. Int J Sports Med. 2010;31(11):826833. PubMed ID: 20830655 doi:10.1055/s-0030-1263103

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Swenson AG, Pritchard NS, Miller LE, Urban JE, Stitzel JD. Characterization of head impact exposure in boys’ youth ice hockey. Res Sport Med. Published online October 25, 2021. doi:10.1080/15438627.2021.1989433

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Talavage TM, Nauman EA, Breedlove EL, et al. Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. J Neurotrauma. 2014;31(4):327338. PubMed ID: 20883154 doi:10.1089/neu.2010.1512

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Davenport EM, Whitlow CT, Urban JE, et al. Abnormal white matter integrity related to head impact exposure in a season of high school varsity football. J Neurotrauma. 2014;31(19):16171624. PubMed ID: 24786802 doi:10.1089/neu.2013.3233

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    USA Hockey. Skill progressions. 2019. https://www.usahockey.com/skillprogressions.

  • 12.

    Hockey Canada. Skill development | checking. 2011. https://www.hockeycanada.ca/en-ca/hockey-programs/players/essentials/positions-skills/checking.

    • Search Google Scholar
    • Export Citation
  • 13.

    Campolettano ET, Gellner RA, Rowson S. Relationship between impact velocity and resulting head accelerations during head impacts in youth football. Proc Int IRCOBI Conf Biomech Impacts. 2018;2018:326333. PubMed ID: 31555774

    • Search Google Scholar
    • Export Citation
  • 14.

    Schmidt JD, Guskiewicz KM, Mihalik JP, Blackburn JT, Siegmund GP, Marshall SW. Head impact magnitude in American high school football. Pediatrics. 2016;138(2):e20154231. doi:10.1542/peds.2015-4231

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Kelley ME, Kane JM, Espeland MA, et al. Head impact exposure measured in a single youth football team during practice drills. J Neurosurg Pediatr. 2017;20(5):489497. PubMed ID: 28937917 doi:10.3171/2017.5.PEDS16627

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Urban JE, Flood WC, Zimmerman BJ, et al. Evaluation of head impact exposure measured from youth football game plays. J Neurosurg Pediatr. 2019;24(2):190199. PubMed ID: 31075762 doi:10.3171/2019.2.PEDS18558

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Kelley ME, Espeland MA, Flood WC, et al. Comparison of head impact exposure in practice drills among multiple youth football teams. J Neurosurg Pediatr. 2019;23(3):381389. PubMed ID: 30579266 doi:10.3171/2018.9.PEDS18314

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Elkin BS, Gabler LF, Panzer MB, Siegmund GP. Brain tissue strains vary with head impact location: a possible explanation for increased concussion risk in struck versus striking football players. Clin Biomech. 2019;64:4957. doi:10.1016/j.clinbiomech.2018.03.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Post A, Oeur A, Hoshizaki B, Gilchrist MD. Examination of the relationship between peak linear and angular accelerations to brain deformation metrics in hockey helmet impacts. Comput Methods Biomech Biomed Engin. 2013;16(5):511519. PubMed ID: 22185521 doi:10.1080/10255842.2011.627559

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Post A, Oeur A, Hoshizaki B, Gilchrist MD. An examination of American football helmets using brain deformation metrics associated with concussion. Mater Des. 2013;45:653662. doi:10.1016/j.matdes.2012.09.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Zhang L, Yang KH, King AI. A proposed injury threshold for mild traumatic brain Injury. J Biomech Eng. 2004;126(2):226236. doi:10.1115/1.1691446

  • 22.

    Kleiven S. Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J. 2007;51:81114.

  • 23.

    Morrison B, Cater HL, Wang CCB, et al. A tissue level tolerance criterion for living brain developed with an in vitro model of traumatic mechanical loading. Stapp Car Crash J. 2003;47:93105. PubMed ID: 17096246 doi:10.4271/2003-22-0006

    • Search Google Scholar
    • Export Citation
  • 24.

    Post A, Blaine Hoshizaki T. Rotational acceleration, brain tissue strain, and the relationship to concussion. J Biomech Eng. 2015;137(3):18. PubMed ID: 25363079 doi:10.1115/1.4028983

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Eckner JT, O’Connor KL, Broglio SP, Ashton-Miller JA. Comparison of head impact exposure between male and female high school ice hockey athletes. Am J Sports Med. 2018;46(9):22532262. PubMed ID:29856659 doi:10.1177/0363546518777244

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Rich AM, Filben TM, Miller LE, et al. Development, validation and pilot field deployment of a custom mouthpiece for head impact measurement. Ann Biomed Eng. 2019;47(10):21092121. PubMed ID: 31297724 doi:10.1007/s10439-019-02313-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Miller LE, Kuo C, Wu LC, Urban JE, Camarillo DB, Stitzel JD. Validation of a custom instrumented retainer form factor for measuring linear and angular head impact kinematics. J Biomech Eng. 2018;140(5):16. PubMed ID: 29383374 doi:10.1115/1.4039165

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Miller LE, Pinkerton EK, Fabian KC, et al. Characterizing head impact exposure in youth female soccer with a custom-instrumented mouthpiece. Res Sport Med. 2020; 28(1):5571. PubMed ID: 30880469 doi:10.1080/15438627.2019.1590833

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    DiGuglielmo DM, Kelley ME, Espeland MA, et al. The effect of player contact characteristics on head impact exposure in youth football games. J Appl Biomech. 2021;37(2):145155. PubMed ID: 33482629 doi:10.1123/jab.2020-0145

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Kelley ME, Jones DA, Espeland MA, et al. Physical performance measures correlate with head impact exposure in youth football. Med Sci Sports Exerc. 2020;52(2):449456. PubMed ID: 31469712 doi:10.1249/MSS.0000000000002144

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Farlinger CM, Kruisselbrink LD, Fowles JR. Relationships to skating performance in competitive hockey players. J Strength Cond Res. 2007;21(3):915922. PubMed ID: 17685681 doi:10.1519/R-19155.1

    • Search Google Scholar
    • Export Citation
  • 32.

    USA Hockey. Rule 608 checking from behind. 2020. https://www.usahockeyrulebook.com/page/show/1084652-rule-608-checking-from-behind.

  • 33.

    Hockey Canada. Rule 6.4 Checking from Behind. 2020. ∼http://rulebook.hockeycanada.ca/english/section-6/rule-6-4/#:∼:text=A Minor penalty and a,hits an opposing player from.

    • Search Google Scholar
    • Export Citation
  • 34.

    Morrissette C, Park PJ, Lehman RA, Popkin CA. Cervical spine injuries in the ice hockey player: current concepts in epidemiology, management and prevention. Glob Spine J. 2020;11(8):12991306. PubMed ID: 33203240 doi:10.1177/2192568220970549

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Mihalik JP, Blackburn JT, Greenwald RM, Cantu RC, Marshall SW, Guskiewicz KM. Collision type and player anticipation affect head impact severity among youth ice hockey players. Pediatrics. 2010;125(6):e1394e1401. PubMed ID: 20478933 doi:10.1542/peds.2009-2849

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Nadkarni L, Haskins A, Holt C, Dexter W. Reduction of high school ice hockey injuries with implementation of new checking/boarding rules. Clin J Sport Med. 2021;31(6):e420e424. doi:10.1097/JSM.0000000000000846

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Post A, Hoshizaki TB, Gilchrist MD, Brien S, Cusimano M, Marshall S. Traumatic brain injuries: the influence of the direction of impact. Neurosurgery. 2015;76(1):8191. PubMed ID: 25525694 doi:10.1227/NEU.0000000000000554

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Walsh ES, Rousseau P, Hoshizaki TB. The influence of impact location and angle on the dynamic impact response of a Hybrid III headform. Sport Eng. 2011;13(3):135143. doi:10.1007/s12283-011-0060-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Puig A, Escalona C, Padullés J, Busquets A, Padullés X, Marcos D. Validity and reliability of the Kinovea program in obtaining angles and distances using coordinates in 4 perspectives. PLoS One. 2019;14(6):114. PubMed ID: 31166989 doi:10.5281/zenodo.2843847

    • Search Google Scholar
    • Export Citation
  • 40.

    Fernández-González P, Koutsou A, Cuesta-Gómez A, Carratalá-Tejada M, Miangolarra-Page JC, Molina-Rueda F. Reliability of kinovea® software and agreement with a three-dimensional motion system for gait analysis in healthy subjects. Sensors. 2020;20(11):3154. PubMed ID: 32498380 doi:10.3390/s20113154

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 571 571 152
Full Text Views 21 21 17
PDF Downloads 31 31 23