Patellofemoral Joint Loading in Forward Lunge With Step Length and Height Variations

in Journal of Applied Biomechanics
View More View Less
  • 1 Department of Physical Therapy, California State University, Sacramento, CA, USA
  • | 2 Results Physical Therapy and Training Center, Sacramento, CA, USA
  • | 3 The Center for Biomedical Engineering and Science, Department of Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, NC, USA
  • | 4 Kinesiology and Health Science Department, California State University, Sacramento, CA, USA
  • | 5 Champion Sports Medicine, Birmingham, AL, USA
  • | 6 American Sports Medicine Institute, Birmingham, AL, USA
Restricted access

The objective was to assess how patellofemoral loads (joint force and stress) change while lunging with step length and step height variations. Sixteen participants performed a forward lunge using short and long steps at ground level and up to a 10-cm platform. Electromyography, ground reaction force, and 3D motion were captured, and patellofemoral loads were calculated as a function of knee angle. Repeated-measures 2-way analysis of variance (P < .05) was employed. Patellofemoral loads in the lead knee were greater with long step at the beginning of landing (10°–30° knee angle) and the end of pushoff (10°–40°) and greater with short step during the deep knee flexion portion of the lunge (50°–100°). Patellofemoral loads were greater at ground level than 10-cm platform during lunge descent (50°–100°) and lunge ascent (40°–70°). Patellofemoral loads generally increased as knee flexion increased and decreased as knee flexion decreased. To gradually increase patellofemoral loads, perform forward lunge in the following sequence: (1) minimal knee flexion (0°–30°), (2) moderate knee flexion (0°–60°), (3) long step and deep knee flexion (0°–100°) up to a 10-cm platform, and (4) long step and deep knee flexion (0°–100°) at ground level.

Escamilla (rescamil@csus.edu) is corresponding author.

  • 1.

    Boren K, Conrey C, Le Coguic J, Paprocki L, Voight M, Robinson TK. Electromyographic analysis of gluteus medius and gluteus maximus during rehabilitation exercises. Int J Sports Phys Ther. 2011;6(3):206223. PubMed ID: 22034614

    • Search Google Scholar
    • Export Citation
  • 2.

    Distefano LJ, Blackburn JT, Marshall SW, Padua DA. Gluteal muscle activation during common therapeutic exercises. J Orthop Sports Phys Ther. 2009;39(7):532540. PubMed ID: 19574661 doi:10.2519/jospt.2009.2796

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Ekstrom RA, Donatelli RA, Carp KC. Electromyographic analysis of core trunk, hip, and thigh muscles during 9 rehabilitation exercises. J Orthop Sports Phys Ther. 2007;37(12):754762. PubMed ID: 18560185 doi:10.2519/jospt.2007.2471

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Farrokhi S, Pollard CD, Souza RB, Chen YJ, Reischl S, Powers CM. Trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise. J Orthop Sports Phys Ther. 2008;38(7):403409. PubMed ID: 18591759 doi:10.2519/jospt.2008.2634

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Jakobsen MD, Sundstrup E, Andersen CH, Aagaard P, Andersen LL. Muscle activity during leg strengthening exercise using free weights and elastic resistance: effects of ballistic vs controlled contractions. Hum Mov Sci. 2013;32(1):6578. PubMed ID: 23231756 doi:10.1016/j.humov.2012.07.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Selkowitz DM, Beneck GJ, Powers CM. Comparison of electromyographic activity of the superior and inferior portions of the gluteus maximus muscle during common therapeutic exercises. J Orthop Sports Phys Ther. 2016;46(9):794799. PubMed ID: 27494053 doi:10.2519/jospt.2016.6493

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Boling MC, Bolgla LA, Mattacola CG, Uhl TL, Hosey RG. Outcomes of a weight-bearing rehabilitation program for patients diagnosed with patellofemoral pain syndrome. Arch Phys Med Rehabil. 2006;87(11):14281435. PubMed ID: 17084115 doi:10.1016/j.apmr.2006.07.264

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Heintjes E, Berger MY, Bierma-Zeinstra SM, Bernsen RM, Verhaar JA, Koes BW. Exercise therapy for patellofemoral pain syndrome. Cochrane Database Syst Rev. 2003;4:CD003472. doi:10.1002/14651858.CD003472

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Natri A, Kannus P, Jarvinen M. Which factors predict the long-term outcome in chronic patellofemoral pain syndrome? A 7-yr prospective follow-up study. Med Sci Sports Exerc. 1998;30(11):15721577. PubMed ID: 9813868 doi:10.1097/00005768-199811000-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Witvrouw E, Danneels L, Van Tiggelen D, Willems TM, Cambier D. Open versus closed kinetic chain exercises in patellofemoral pain: a 5-year prospective randomized study. Am J Sports Med. 2004;32(5):11221130. PubMed ID: 15262632 doi:10.1177/0363546503262187

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Witvrouw E, Lysens R, Bellemans J, Peers K, Vanderstraeten G. Open versus closed kinetic chain exercises for patellofemoral pain. A prospective, randomized study. Am J Sports Med. 2000;28(5):687694. PubMed ID: 11032226 doi:10.1177/03635465000280051201

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Biedert RM, Sanchis-Alfonso V. Sources of anterior knee pain. Clin Sports Med. 2002;21(3):335347. PubMed ID: 12365231 doi:10.1016/S0278-5919(02)00026-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Besier TF, Draper CE, Gold GE, Beaupre GS, Delp SL. Patellofemoral joint contact area increases with knee flexion and weight-bearing. J Orthop Res. 2005;23(2):345350. PubMed ID: 15734247 doi:10.1016/j.orthres.2004.08.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Wojtys EM, Beaman DN, Glover RA, Janda D. Innervation of the human knee joint by substance-P fibers. Arthroscopy. 1990;6(4):254263. PubMed ID: 1702291 doi:10.1016/0749-8063(90)90054-H

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Doucette SA, Child DD. The effect of open and closed chain exercise and knee joint position on patellar tracking in lateral patellar compression syndrome. J Orthop Sports Phys Ther. 1996;23(2):104110. PubMed ID: 8808512 doi:10.2519/jospt.1996.23.2.104

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Powers CM. The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: a theoretical perspective. J Orthop Sports Phys Ther. 2003;33(11):639646. PubMed ID: 14669959 doi:10.2519/jospt.2003.33.11.639

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Escamilla RF, Zheng N, MacLeod TD, et al. Patellofemoral compressive force and stress during the forward and side lunges with and without a stride. Clin Biomech. 2008;23(8):10261037. doi:10.1016/j.clinbiomech.2008.05.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Escamilla RF, Zheng N, Macleod TD, et al. Patellofemoral joint force and stress between a short- and long-step forward lunge. J Orthop Sports Phys Ther. 2008;38(11):681690. PubMed ID: 18978453 doi:10.2519/jospt.2008.2694

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Hofmann CL, Holyoak DT, Juris PM. Trunk and shank position influences patellofemoral joint stress in the lead and trail limbs during the forward lunge exercise. J Orthop Sports Phys Ther. 2017;47(1):3140. PubMed ID: 27814666 doi:10.2519/jospt.2017.6336

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Balady G, Berra K, Golding L. ACSM’s Guidelines for Exercise Testing and Prescription. Lippincott Williams & Wilkins; 2000.

  • 21.

    Basmajian J, Blumenstein R. Electrode Placement in EMG Biofeedback. Williams and Wilkins; 1980.

  • 22.

    Escamilla RF, Zheng N, Macleod TD, et al. Patellofemoral joint force and stress during the wall squat and one-leg squat. Med Sci Sports Exerc. 2009;41(4):879888. PubMed ID: 19276845 doi:10.1249/MSS.0b013e31818e7ead

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Escamilla RF, Fleisig GS, Zheng N, Barrentine SW, Wilk KE, Andrews JR. Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. Med Sci Sports Exerc. 1998;30(4):556569. PubMed ID: 9565938 doi:10.1097/00005768-199804000-00014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Escamilla RF, Fleisig GS, Zheng N, et al. Effects of technique variations on knee biomechanics during the squat and leg press. Med Sci Sports Exerc. 2001;33(9):15521566. PubMed ID: 11528346 doi:10.1097/00005768-200109000-00020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Zheng N, Fleisig GS, Escamilla RF, Barrentine SW. An analytical model of the knee for estimation of internal forces during exercise. J Biomech. 1998;31(10):963967. PubMed ID: 9840764 doi:10.1016/S0021-9290(98)00056-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Salem GJ, Powers CM. Patellofemoral joint kinetics during squatting in collegiate women athletes. Clin Biomech. 2001;16(5):424430. doi:10.1016/S0268-0033(01)00017-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Escamilla RF. Knee biomechanics of the dynamic squat exercise. Med Sci Sports Exerc. 2001;33(1):127141. PubMed ID: 11194098 doi:10.1097/00005768-200101000-00020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Wallace DA, Salem GJ, Salinas R, Powers CM. Patellofemoral joint kinetics while squatting with and without an external load. J Orthop Sports Phys Ther. 2002;32(4):141148. PubMed ID: 11949662 doi:10.2519/jospt.2002.32.4.141

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Brechter JH, Powers CM. Patellofemoral joint stress during stair ascent and descent in persons with and without patellofemoral pain. Gait Posture. 2002;16(2):115123. PubMed ID: 12297253 doi:10.1016/S0966-6362(02)00090-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Heino Brechter J, Powers CM. Patellofemoral stress during walking in persons with and without patellofemoral pain. Med Sci Sports Exerc. 2002;34(10):15821593. PubMed ID: 12370559 doi:10.1097/00005768-200210000-00009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Li G, DeFrate LE, Zayontz S, Park SE, Gill TJ. The effect of tibiofemoral joint kinematics on patellofemoral contact pressures under simulated muscle loads. J Orthop Res. 2004;22(4):801806. PubMed ID: 15183437 doi:10.1016/j.orthres.2003.11.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Cohen ZA, Roglic H, Grelsamer RP, et al. Patellofemoral stresses during open and closed kinetic chain exercises. An analysis using computer simulation. Am J Sports Med. 2001;29(4):480487. PubMed ID: 11476390 doi:10.1177/03635465010290041701

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Hinterwimmer S, Gotthardt M, von Eisenhart-Rothe R, et al. In vivo contact areas of the knee in patients with patellar subluxation. J Biomech. 2005;38(10):20952101. PubMed ID: 16084210 doi:10.1016/j.jbiomech.2004.09.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Patel VV, Hall K, Ries M, et al. Magnetic resonance imaging of patellofemoral kinematics with weight-bearing. J Bone Joint Surg Am. 2003;85(12):24192424. PubMed ID: 14668513 doi:10.2106/00004623-200312000-00021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Salsich GB, Ward SR, Terk MR, Powers CM. In vivo assessment of patellofemoral joint contact area in individuals who are pain free. Clin Orthop Relat Res. 2003;417:277284.

    • Search Google Scholar
    • Export Citation
  • 36.

    Zajac FE. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng. 1989;17(4):359411. PubMed ID: 2676342

    • Search Google Scholar
    • Export Citation
  • 37.

    Epstein M, Herzog W. Theoretical Models of Skeletal Muscle:Biological & Mathematical Considerations. John Wiley & Sons; 1998: 3032.

  • 38.

    Cholewicki J, McGill SM, Norman RW. Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: towards development of a hybrid approach. J Biomech. 1995;28(3):321331. PubMed ID: 7730390 doi:10.1016/0021-9290(94)00065-C

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Narici MV, Landoni L, Minetti AE. Assessment of human knee extensor muscles stress from in vivo physiological cross-sectional area and strength measurements. Eur J Appl Physiol Occup Physiol. 1992;65(5):438444. PubMed ID: 1425650 doi:10.1007/BF00243511

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Wickiewicz TL, Roy RR, Powell PL, Perrine JJ, Edgerton VR. Muscle architecture and force-velocity relationships in humans. J Appl Physiol Respir Environ Exerc Physiol. 1984;57(2):435443. PubMed ID: 6469814

    • Search Google Scholar
    • Export Citation
  • 41.

    van Eijden T, Kouwenhoven E, Verburg J, Weijs W. A mathematical model of the patellofemoral joint. J Biomech. 1986;19(3):219229. PubMed ID: 3700434 doi:10.1016/0021-9290(86)90154-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Salsich GB, Brechter JH, Powers CM. Lower extremity kinetics during stair ambulation in patients with and without patellofemoral pain. Clin Biomech. 2001;16(10):906912. doi:10.1016/S0268-0033(01)00085-7

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 398 398 188
Full Text Views 21 21 8
PDF Downloads 33 33 12