The Nonintuitive Contributions of Individual Quadriceps Muscles to Patellar Tracking

Click name to view affiliation

Seong-won Han Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada

Search for other papers by Seong-won Han in
Current site
Google Scholar
PubMed
Close
*
,
Andrew Sawatsky Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada

Search for other papers by Andrew Sawatsky in
Current site
Google Scholar
PubMed
Close
, and
Walter Herzog Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
Biomechanics Laboratory, School of Sports, Federal University of Santa Catarina, Florianopolis, SC, Brazil

Search for other papers by Walter Herzog in
Current site
Google Scholar
PubMed
Close
Restricted access

The purpose of this study was to quantify the contribution of the individual quadriceps muscles to patellar tracking. The individual and/or combined quadriceps muscles were activated in rabbits (n = 6) during computer-controlled flexion/extension of the knee. Three-dimensional patellar tracking was measured for the vastus lateralis, vastus medialis, and rectus femoris when activated alone and when activated simultaneously at different frequencies, producing a range of knee extensor torques. Patellar tracking changed substantially as a function of knee extensor torque and differed between muscles. Specifically, when all quadriceps muscles were activated simultaneously, the patella shifted more medially and proximally and rotated and tilted more medially compared with when vastus lateralis and rectus femoris were activated alone (P < .05), whereas vastus medialis activation alone produced a similar tracking pattern to that observed when all quadriceps muscles were activated simultaneously. Furthermore, patellar tracking for a given muscle condition shifted more medially and proximally and rotated and tilted more medially with increasing knee extensor torques across the entire range of knee joint angles. The authors conclude that patellar tracking depends crucially on knee extensor force/torque and that vastus medialis affects patellar tracking in a distinctly different way than vastus lateralis and rectus femoris, which produce similar tracking patterns.

Han (seongwon.han@ucalgary.ca) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Amis AA. Current concepts on anatomy and biomechanics of patellar stability. Sports Med Arthrosc Rev. 2007;15(2):4856. PubMed ID: 17505317 doi:10.1097/JSA.0b013e318053eb74

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Farahmand F, Senavongse W, Amis AA. Quantitative study of the quadriceps muscles and trochlear groove geometry related to instability of the patellofemoral joint. J Orthop Res. 1998;16(1):136143. doi:10.1002/jor.1100160123

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Goh JC, Lee PY, Bose K. A cadaver study of the function of the oblique part of vastus medialis. J Bone J Surg Br Vol. 1995;77(2):225231. PubMed ID: 7706335 doi:10.1302/0301-620X.77B2.7706335

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Sakai N, Luo ZP, Rand JA, An KN. The influence of weakness in the vastus medialis oblique muscle on the patellofemoral joint: an in vitro biomechanical study. Clin Biomech. 2000;15(5):335339. PubMed ID: 10758294 doi:10.1016/S0268-0033(99)00089-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Ahmed AM, Burke DL, Yu A. In-vitro measurement of static pressure distribution in synovial joints—part II: retropatellar surface. J Biomech Eng. 1983;105(3):226236. PubMed ID: 6632824 doi:10.1115/1.3138410

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Stephen J, Alva A, Lumpaopong P, Williams A, Amis AA. A cadaveric model to evaluate the effect of unloading the medial quadriceps on patellar tracking and patellofemoral joint pressure and stability. J Exp Orthop. 2018;5(1):34. PubMed ID: 30203221 doi:10.1186/s40634-018-0150-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Lefebvre R, Leroux A, Poumarat G, et al. Vastus medialis: anatomical and functional considerations and implications based upon human and cadaveric studies. J Manipulative Physiol Ther. 2006;29(2):139144. PubMed ID: 16461173 doi:10.1016/j.jmpt.2005.12.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Makhsous M, Lin F, Koh JL, Nuber GW, Zhang LQ. In vivo and noninvasive load sharing among the vasti in patellar malalignment. Med Sci Sports Exerc. 2004;36(10):17681775. PubMed ID: 15595299 doi:10.1249/01.MSS.0000142302.54730.7F

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Azizi E, Brainerd EL, Roberts TJ. Variable gearing in pennate muscles. Proc Natl Acad Sci USA. 2008;105(5):17451750. doi:10.1073/pnas.0709212105

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Egloff C, Sawatsky A, Leonard T, Fung T, Valderrabano V, Herzog W. Alterations in patellofemoral kinematics following vastus medialis transection in the anterior cruciate ligament deficient rabbit knee. Clin Biomech. 2014;29(5):577582. PubMed ID: 24703827 doi:10.1016/j.clinbiomech.2014.03.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Sawatsky A, Bourne D, Horisberger M, Jinha A, Herzog W. Changes in patellofemoral joint contact pressures caused by vastus medialis muscle weakness. Clin Biomech. 2012;27(6):595601. PubMed ID: 22226076 doi:10.1016/j.clinbiomech.2011.12.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Lin F, Makhsous M, Chang AH, Hendrix RW, Zhang LQ. In vivo and noninvasive six degrees of freedom patellar tracking during voluntary knee movement. Clin Biomech. 2003;18(5):401409. PubMed ID: 12763436 doi:10.1016/S0268-0033(03)00050-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Lin F, Wilson NA, Makhsous M, et al. In vivo patellar tracking induced by individual quadriceps components in individuals with patellofemoral pain. J Biomech. 2010;43(2):235241. PubMed ID: 19878947 doi:10.1016/j.jbiomech.2009.08.043

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Han SW, Sawatsky A, de Brito Fontana H, Herzog W. Contribution of individual quadriceps muscles to knee joint mechanics. J Exp Biol. 2019;222:jeb188292. doi:10.1242/jeb.188292

    • Search Google Scholar
    • Export Citation
  • 15.

    Han SW, Sawatsky A, Jinha A, Herzog W. Effect of vastus medialis loss on rabbit patellofemoral joint contact pressure distribution. J Appl Biomech. 2020;36(6):390396. doi:10.1123/jab.2020-0056

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Hedrick TL. Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir Biomim. 2008;3(3):034001. PubMed ID: 18591738 doi:10.1088/1748-3182/3/3/034001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Gordon AM, Huxley AF, Julian FJ. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol. 1966;184(1):170192. PubMed ID: 5921536 doi:10.1113/jphysiol.1966.sp007909

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Sandercock TG, Wei Q, Dhaher YY, Pai DK, Tresch MC. Vastus lateralis and vastus medialis produce distinct mediolateral forces on the patella but similar forces on the tibia in the rat. J Biomech. 2018;81:4551. PubMed ID: 30269930 doi:10.1016/j.jbiomech.2018.09.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Sheehan FT, Borotikar BS, Behnam AJ, Alter KE. Alterations in in vivo knee joint kinematics following a femoral nerve branch block of the vastus medialis: implications for patellofemoral pain syndrome. Clin Biomech. 2012;27(6):525531. PubMed ID: 22244738 doi:10.1016/j.clinbiomech.2011.12.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Herzog W, Longino D, Clark A. The role of muscles in joint adaptation and degeneration. Langenbecks Arch Surg. 2003;388(5):305315. doi:10.1007/s00423-003-0402-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Purslow PP. Strain-induced reorientation of an intramuscular connective tissue network: implications for passive muscle elasticity. J Biomech. 1989;22(1):2131. PubMed ID: 2914969 doi:10.1016/0021-9290(89)90181-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Maas H, Sandercock TG. Are skeletal muscles independent actuators? Force transmission from soleus muscle in the cat. J Appl Physiol. 2008;104(6):15571567. PubMed ID: 18339889 doi:10.1152/japplphysiol.01208.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Maas H, Sandercock TG. Force transmission between synergistic skeletal muscles through connective tissue linkages. J Biotechnol Biomed. 2010;2010:575672. PubMed ID: 20396618 doi:10.1155/2010/575672

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Han S. Changes in Patellofemoral Joint Mechanics in the Presence of Quadriceps Muscle Imbalance. [PhD Thesis]. Calgary, AB: University of Calgary; 2020.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1338 506 19
Full Text Views 406 54 3
PDF Downloads 301 12 2