Can Anthropometry be Used to Dictate Participant-Specific Thigh Marker Placements Which Minimize Error in Hip Joint Center Estimation?

Click name to view affiliation

Jessa M. Buchman-Pearle Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada

Search for other papers by Jessa M. Buchman-Pearle in
Current site
Google Scholar
PubMed
Close
and
Stacey M. Acker Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada

Search for other papers by Stacey M. Acker in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Specific participant characteristics may be leveraged to dictate marker placements which reduce soft tissue artifact; however, a better understanding of the relationships between participant characteristics and soft tissue artifact are first required. The purpose of this study was to assess the accuracy in which measures of whole-body and thigh anthropometry could predict mislocation error of the hip joint center, tracked using skin-mounted marker clusters. Fifty participants completed squatting and kneeling, while pelvis and lower limb motion were recorded. The effect of soft tissue artifact was estimated from 6 rigid thigh marker clusters by evaluating their ability to track the position of the hip joint center most like the pelvis cluster. Eighteen backward stepwise linear regressions were performed using 10 anthropometric measures as independent variables and the mean of the peak difference between the thigh and pelvis cluster-tracked hip joint centers. Fourteen models significantly predicted error with low to moderate fit (R = .38–.67), explaining 14% to 45% of variation. Partial correlations indicated that soft tissue artifact may increase with soft tissue volume and be altered by local soft tissue composition. However, it is not recommended that marker placement be adjusted based on anthropometry alone.

Acker (stacey.acker@uwaterloo.ca) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Leardini A, Chiari L, Croce UD, et al. Human movement analysis using stereophotogrammetry part 3. Soft tissue artifact assessment and compensation. Gait Posture. 2005;21(2):212225. doi:10.1016/j.gaitpost.2004.05.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Peters A, Galna B, Sangeux M, Morris M, Baker R. Quantification of soft tissue artifact in lower limb human motion analysis: a systematic review. Gait Posture. 2010;31(1):18. PubMed ID: 19853455 doi:10.1016/j.gaitpost.2009.09.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Stagni R, Fantozzi S, Cappello A, Leardini A. Quantification of soft tissue artefact in motion analysis by combining 3D fluoroscopy and stereophotogrammetry: a study on two subjects. Clin Biomech. 2005;20(3):320329. doi:10.1016/j.clinbiomech.2004.11.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Barré A, Jolles BM, Theumann N, Aminian K. Soft tissue artifact distribution on lower limbs during treadmill gait: influence of skin markers’ location on cluster design. J Biomech. 2015;48(10):19651971. PubMed ID: 25920897 doi:10.1016/j.jbiomech.2015.04.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Akbarshahi M, Schache AG, Fernandez JW, Baker R, Banks SA, Pandy MG. Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity. J Biomech. 2010;43(7):12921301. PubMed ID: 20206357 doi:10.1016/j.jbiomech.2010.01.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Tsai T-Y, Lu T-W, Kuo M-Y, Lin C-C. Effects of soft tissue artifacts on the calculated kinematics and kinetics of the knee during stair-ascent. J Biomech. 2011;44(6):11821188. PubMed ID: 21296352 doi:10.1016/j.jbiomech.2011.01.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Kuo M-Y, Tsai T-Y, Lin C-C, Lu T-W, Hsu H-C, Shen W-C. Influence of soft tissue artifacts on the calculated kinematics and kinetics of total knee replacements during sit-to-stand. Gait Posture. 2011;33(3):379384. PubMed ID: 21227694 doi:10.1016/j.gaitpost.2010.12.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Karlsson D, Tranberg R. On skin movement artefact-resonant frequencies of skin markers attached to the leg. Hum Mov Sci. 1999;18(5):627635. doi:10.1016/S0167-9457(99)00025-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Sati M, de Guise JA, Larouche S, Drouin G. Quantitative assessment of skin-bone movement at the knee. Knee. 1996;3(3):121138. doi:10.1016/0968-0160(96)00210-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Buchman-Pearle JM, Acker SM. Estimating soft tissue artifact of the thigh in high knee flexion tasks using optical motion capture: implications for marker cluster placement. J Biomech. 2021;127:110659. PubMed ID: 34385050 doi:10.1016/j.jbiomech.2021.110659

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Cappozzo A, Catani F, Leardini A, Benedetti MG, Croce UD. Position and orientation in space of bones during movement: experimental artefacts. Clin Biomech. 1996;11(2):90100. doi:10.1016/0268-0033(95)00046-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Fuller J, Liu L-J, Murphy MC, Mann RW. A comparison of lower-extremity skeletal kinematics measured using skin- and pin-mounted markers. Hum Mov Sci. 1997;16(2–3):219242. doi:10.1016/S0167-9457(96)00053-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Bonci T, Camomilla V, Dumas R, Chèze L, Cappozzo A. A soft tissue artefact model driven by proximal and distal joint kinematics. J Biomech. 2014;47(10):23542361. PubMed ID: 24818796 doi:10.1016/j.jbiomech.2014.04.029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Cappello A, Cappozzo A, La Palombara PF, Lucchetti L, Leardini A. Multiple anatomical landmark calibration for optimal bone pose estimation. Hum Mov Sci. 1997;16(2–3):259274. doi:10.1016/S0167-9457(96)00055-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Camomilla V, Cereatti A, Chèze L, Cappozzo A. A hip joint kinematics driven model for the generation of realistic thigh soft tissue artefacts. J Biomech. 2013;46(3):625630. PubMed ID: 23116764 doi:10.1016/j.jbiomech.2012.09.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Garling EH, Kaptein BL, Mertens B, et al. Soft-tissue artefact assessment during step-up using fluoroscopy and skin-mounted markers. J Biomech. 2007;40(suppl 1):S18S24. PubMed ID: 17462655 doi:10.1016/j.jbiomech.2007.03.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Clément J, de Guise JA, Fuentes A, Hagemeister N. Comparison of soft tissue artifact and its effects on knee kinematics between non-obese and obese subjects performing a squatting activity recorded using an exoskeleton. Gait Posture. 2018;61:197203. PubMed ID: 29353745 doi:10.1016/j.gaitpost.2018.01.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Barré A, Thiran J-PP, Jolles BM, Theumann N, Aminian K. Soft tissue artifact assessment during treadmill walking in subjects with total knee arthroplasty. IEEE Trans Biomed Eng. 2013;60(11):31313140. PubMed ID: 23782791 doi:10.1109/tbme.2013.2268938

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Camomilla V, Bonci T, Cappozzo A. Soft tissue displacement over pelvic anatomical landmarks during 3-D hip movements. J Biomech. 2017;62:1420. PubMed ID: 28237184 doi:10.1016/j.jbiomech.2017.01.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Hemmerich A, Brown H, Smith S, Marthandam SSK, Wyss UP. Hip, knee, and ankle kinematics of high range of motion activities of daily living. J Orthop Res. 2006;24(4):770781. PubMed ID: 16514664 doi:10.1002/jor.20114

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Fiorentino NM, Atkins PR, Kutschke MJ, Foreman KB, Anderson AE. In-vivo quantification of dynamic hip joint center errors and soft tissue artifact. Gait Posture. 2016;50:246251. PubMed ID: 27693944 doi:10.1016/j.gaitpost.2016.09.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Stewart A, Marfell-Jones M. International Standards for Anthropometric Assessment. 3rd ed. International Society for the Advancement of Kinanthropometry. 2011.

    • Search Google Scholar
    • Export Citation
  • 23.

    Camomilla V, Cereatti A, Vannozzi G, Cappozzo A. An optimized protocol for hip joint centre determination using the functional method. J Biomech. 2006;39(6):10961106. PubMed ID: 16549099 doi:10.1016/j.jbiomech.2005.02.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Longpré HS, Potvin JR, Maly MR. Biomechanical changes at the knee after lower limb fatigue in healthy young women. Clin Biomech. 2013;28(4):441447. doi:10.1016/j.clinbiomech.2013.02.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Winter DA. Biomechanics and Motor Control of Human Movement. 4th ed. Wiley; 2009.

  • 26.

    Schwartz MH, Rozumalski A. A new method for estimating joint parameters from motion data. J Biomech. 2005;38(1):107116. PubMed ID: 15519345 doi:10.1016/j.jbiomech.2004.03.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Ehrig RM, Taylor WR, Duda GN, Heller MO. A survey of formal methods for determining the centre of rotation of ball joints. J Biomech. 2006;39(15):27982809. PubMed ID: 16293257 doi:10.1016/j.jbiomech.2005.10.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    MacWilliams BA. A comparison of four functional methods to determine centers and axes of rotations. Gait Posture. 2008;28(4):673679. PubMed ID: 18586496 doi:10.1016/j.gaitpost.2008.05.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Kainz H, Carty CP, Modenese L, Boyd RN, Lloyd DG. Estimation of the hip joint centre in human motion analysis: a systematic review. Clin Biomech. 2015;30(4):319329. doi:10.1016/j.clinbiomech.2015.02.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Chong HC, Tennant LM, Kingston DC, Acker SM. Knee joint moments during high flexion movements: timing of peak moments and the effect of safety footwear. Knee. 2017;24(2):271279. PubMed ID: 28169098 doi:10.1016/j.knee.2016.12.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Babyak M. What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models. Psychosom Med. 2004;66(3):441421. doi:10.1300/j120v12n27_14

    • Search Google Scholar
    • Export Citation
  • 32.

    Steyerberg EW, Eijkemans MJ, Harrell FE Jr, Habbema JF. Prognostic modeling with logistic regression analysis: in search of a sensible strategy in small data sets. Med Decis. 2001;21(1):4556. doi:10.1177/0272989X0102100106

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Chehab EFF, Andriacchi TP, Favre J. Speed, age, sex, and body mass index provide a rigorous basis for comparing the kinematic and kinetic profiles of the lower extremity during walking. J Biomech. 2017;58:1120. http://www.ncbi.nlm.nih.gov/pubmed/28501342. Accessed May 21, 2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Schielzeth H. Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol. 2010;1(2):103113. doi:10.1111/j.2041-210X.2010.00012.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Legendre P, Legendre L. Numerical Ecology. 3rd ed. Elsevier; 2012.

  • 36.

    Mukaka MM. Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 2012;24(3):6971. http://www.ncbi.nlm.nih.gov/pubmed/23638278. Accessed September 6, 2019.

    • Search Google Scholar
    • Export Citation
  • 37.

    Bell AL, Pedersen DR, Brand RA. A comparison of the accuracy of several hip center location prediction methods. J Biomech. 1990;23(6):617621. PubMed ID: 2341423 doi:10.1016/0021-9290(90)90054-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Davis RB, Õunpuu S, Tyburski D, Gage JR. A gait analysis data collection and reduction technique. Hum Mov Sci. 1991;10(5):575587. doi:10.1016/0167-9457(91)90046-Z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Harrington ME, Zavatsky AB, Lawson SEM, Yuan Z, Theologis TN. Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging. J Biomech. 2007;40(3):595602. doi:10.1016/j.jbiomech.2006.02.003

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1094 649 44
Full Text Views 335 54 0
PDF Downloads 209 18 0