Measures of Lower Body Strength Associated With Injuries in Australian Special Forces Selection Candidates

Click name to view affiliation

Tim L.A. Doyle Department of Health Sciences, Macquarie University, Sydney, NSW, Australia

Search for other papers by Tim L.A. Doyle in
Current site
Google Scholar
PubMed
Close
*
,
AuraLea C. Fain Department of Health Sciences, Macquarie University, Sydney, NSW, Australia

Search for other papers by AuraLea C. Fain in
Current site
Google Scholar
PubMed
Close
,
Jodie A. Wills Department of Health Sciences, Macquarie University, Sydney, NSW, Australia

Search for other papers by Jodie A. Wills in
Current site
Google Scholar
PubMed
Close
,
Daniel Cooper Department of Health Sciences, Macquarie University, Sydney, NSW, Australia

Search for other papers by Daniel Cooper in
Current site
Google Scholar
PubMed
Close
,
Kevin Toonen Australian Army, Canberra, ACT, Australia

Search for other papers by Kevin Toonen in
Current site
Google Scholar
PubMed
Close
, and
Benjamin Kamphius Australian Army, Canberra, ACT, Australia

Search for other papers by Benjamin Kamphius in
Current site
Google Scholar
PubMed
Close
Restricted access

The diverse and grueling nature of activities undertaken during Special Forces selection makes it difficult to develop physical training to improve performance and reduce injury risk. It is generally accepted that increased strength is protective against injury, but it is unclear if this is evident in a Special Forces selection environment. This study investigated the effect of the rigors of a Special Forces selection course has on performance of the isometric mid-thigh pull, countermovement jump, squat jump, drop landing, elastic utilization ratio (EUR), and injury occurrence. Throughout the course, 26% of participants sustained a preventable lower limb injury, with 65% of these occurring at the knee. The uninjured had higher values of absolute strength as measured by isometric mid-thigh pull peak absolute force (3399 [371] N, 3146 [307] N; P = .022) and lower EUR (0.94 [0.08], 1.01 [0.09]; P = .025) compared to the injured. Preventable knee injury was significantly correlated with isometric mid-thigh pull (r = −.245, P = .031) and EUR (r = .227, P = .044). The selection course altered EUR for uninjured individuals only (P = .004). Findings indicate that individuals with higher strength levels may be at a lower risk of injury than their weaker counterparts.

Doyle (tim.doyle@mq.edu.au) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Farina EK, Thompson LA, Knapik JJ, Pasiakos SM, McClung JP, Lieberman HR. Physical performance, demographic, psychological, and physiological predictors of success in the U.S. Army Special Forces Assessment and Selection course. Physiol Behav. 2019;210:112647. PubMed ID: 31401079 doi:10.1016/j.physbeh.2019.112647

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Australian Army. Special Forces Training Centre—Australian Army. October 20, 2016. http://www.army.gov.au/Our-people/Units/Special-Operations-Command/Special-Forces-Training-Centre. Accessed October 20, 2016.

    • Search Google Scholar
    • Export Citation
  • 3.

    Abt JP, Oliver JM, Nagai T, et al. Block-periodized training improves physiological and tactically relevant performance in naval special warfare operators. J Strength Cond Res. 2016;30(1):3952. PubMed ID: 26154155 doi:10.1519/jsc.0000000000001082

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Carlson MJ, Jaenen SP. The development of a preselection physical fitness training program for Canadian Special Operations Regiment applicants. J Strength Cond Res. 2012;26(suppl 2):S2S14. doi:10.1519/JSC.0b013e31825d7ff9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Knapik JJ, Farina EK, Ramirez CB, Pasiakos SM, McClung JP, Lieberman HR. Medical encounters during the United States army special forces assessment and selection course. Mil Med. 2019;184(7–8):e337e343. PubMed ID: 30941425 doi:10.1093/milmed/usz056

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Warfe PG, Jones DD, Prigg SK. Developing injury prevention strategies for the Australian Defence Force. J Mil Vet Health. 2000;19(3):4549.

    • Search Google Scholar
    • Export Citation
  • 7.

    Lovalekar M, Johnson CD, Eagle S, et al. Epidemiology of musculoskeletal injuries among US Air Force Special Tactics Operators: an economic cost perspective. BMJ Open Sport Exerc Med. 2018;4(1):e000471. PubMed ID: 30622731 doi:10.1136/bmjsem-2018-000471

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Reynolds K, Cosio-Lima L, Bovill M, Tharion W, Williams J, Hodges T. A comparison of injuries, limited-duty days, and injury risk factors in infantry, artillery, construction engineers, and special forces soldiers. Mil Med. 2009;174(7):702708. PubMed ID: 19685841 doi:10.7205/milmed-d-02-2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Knapik JJ, Bullock SH, Toney E, Wells J, Hoedebecke E, Jones B. Influence of an injury reduction program on injury and fitness outcomes among soldiers. Inj Prev. 2004;10(1):3742. PubMed ID: 14760025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Bahr R, Holme I. Risk factors for sports injuries—a methodological approach. Br J Sports Med. 2003;37(5):384392. PubMed ID: 14514527 doi:10.1136/bjsm.37.5.384

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Fulton J, Wright K, Kelly M, et al. Injury risk is altered by previous injury: a systematic review of the literature and presentation of causative neuromuscular factors Int J Sport Phys Ther. 2014;9(5):583595.

    • Search Google Scholar
    • Export Citation
  • 12.

    Gabbett TJ, Ullah S, Finch CF. Identifying risk factors for contact injury in professional rugby league players--application of a frailty model for recurrent injury. J Sci Med Sport. 2012;15(6):496504. PubMed ID: 22748762 doi:10.1016/j.jsams.2012.03.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Wang HK, Chen CH, Shiang TY, Jan MH, Lin KH. Risk-factor analysis of high school basketball-player ankle injuries: a prospective controlled cohort study evaluating postural sway, ankle strength, and flexibility. Arch Phys Med Rehabil. 2006;87(6):821825. PubMed ID: 16731218 doi:10.1016/j.apmr.2006.02.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Malone S, Hughes B, Doran DA, Collins K, Gabbett TJ. Can the workload–injury relationship be moderated by improved strength, speed and repeated-sprint qualities? J Sci Med Sport. 2019;22(1):2934. PubMed ID: 30057364

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Claiborne TL, Armstrong CW, Gandhi V, Pincivero DM. Relationship between hip and knee strength and knee valgus during a single leg squat. J Appl Biomech. 2006;22(1):4150. PubMed ID: 16760566 doi:10.1123/jab.22.1.41

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    McGuigan MR, Winchester JB, Erickson T. The importance of isometric maximum strength in college wrestlers. J Sport Sci Med. 2006;5(CSSI):108113.

    • Search Google Scholar
    • Export Citation
  • 17.

    Haff GG, Stone M, O’Bryant HS, et al. Force-time dependent characteristics of dynamic and isometric muscle actions. J Strength Cond Res. 1997;11(4):269272.

    • Search Google Scholar
    • Export Citation
  • 18.

    Haff GG, Carlock JM, Hartman MJ, et al. Force-time curve characteristics of dynamic and isometric muscle actions of elite women Olympic weightlifters. J Strength Cond Res. 2005;19(4):741748. PubMed ID: 16287343

    • Search Google Scholar
    • Export Citation
  • 19.

    Darrall-Jones JD, Jones B, Till K. Anthropometric and physical profiles of English academy rugby union players. J Strength Cond Res. 2015;29(8):20862096. PubMed ID: 25647656 doi:10.1519/jsc.0000000000000872

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Hawkins SB, Doyle TL, McGuigan MR. The effect of different training programs on eccentric energy utilization in college-aged males. J Strength Cond Res. 2009;23(7):19962002. PubMed ID: 19855323 doi:10.1519/JSC.0b013e3181b3dd57

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Cormack SJ, Newton RU, McGuigan MR, Doyle TL. Reliability of measures obtained during single and repeated countermovement jumps. Int J Sports Physiol Perform. 2008;3(2):131144. PubMed ID: 19208922

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    McMaster DT, Gill N, Cronin J, McGuigan M. A brief review of strength and ballistic assessment methodologies in sport. Sports Med. 2014;44(5):603623. PubMed ID: 24497158 doi:10.1007/s40279-014-0145-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Van Hooren B, Zolotarjova J. The difference between countermovement and squat jump performances: a review of underlying mechanisms with practical applications. J Strength Cond Res. 2017;31(7):20112020. PubMed ID: 28640774 doi:10.1519/JSC.0000000000001913

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Doyle TLA. How effectively is the stretch-shortening cycle being used by athletes? J Aust Strength Cond. 2005;13(2), 413415.

  • 25.

    McGuigan MR, Doyle TL, Newton M, Edwards DJ, Nimphius S, Newton RU. Eccentric utilization ratio: effect of sport and phase of training. J Strength Cond Res. 2006;20(4):992995. PubMed ID: 17194252 doi:10.1519/r-19165.1

    • Search Google Scholar
    • Export Citation
  • 26.

    Yu B, Gabriel D, Noble L, An K-N. Estimate of the optimum cutoff frequency for the Butterworth low-pass digital filter. J Appl Biomech. 1999;15(3):318329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Comfort P, Jones PA, McMahon JJ, Newton R. Effect of knee and trunk angle on kinetic variables during the isometric mid-thigh pull: test-retest reliability. Int J Sports Physiol Perform. 2015;10(1):5863. PubMed ID: 24912198 doi:10.1123/ijspp.2014-0077

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Stone MH, Sands WA, Pierce KC, Carlock J, Cardinale M, Newton RU. Relationship of maximum strength to weightlifting performance. Med Sci Sports Exerc. 2005;37(6):10371043. PubMed ID: 15947731

    • Search Google Scholar
    • Export Citation
  • 29.

    Fransz DP, Huurnink A, Kingma I, van Dieën JH. How does postural stability following a single leg drop jump landing task relate to postural stability during a single leg stance balance task? J Biomech. 2014;47(12):32483253. PubMed ID: 25016486 doi:10.1016/j.jbiomech.2014.06.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Abt JP, Sell TC, Lovalekar MT, et al. Injury epidemiology of U.S. Army Special Operations forces. Mil Med. 2014;179(10):11061112. PubMed ID: 25269128 doi:10.7205/milmed-d-14-00078

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Hedges LV. Distribution theory for Glass’s estimator of effect size and related estimators. J Educ Stat. 1981;6(2):107128.

  • 32.

    Meardon S, Klusendorf A, Kernozek T. Influence of injury on dynamic postural control in runners. Int J Sports Phys Ther. 2016;11(3):366377. PubMed ID: 27274423

    • Search Google Scholar
    • Export Citation
  • 33.

    McLean SG, Huang X, Su A, Van Den Bogert AJ. Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. Clin Biomech. 2004;19(8):828838. doi:10.1016/j.clinbiomech.2004.06.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Ferber R, Hreljac A, Kendall KD. Suspected mechanisms in the cause of overuse running injuries: a clinical review. Sports Health. 2009;1(3):242246. PubMed ID: 23015879 doi:10.1177/1941738109334272

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Niemuth PE, Johnson RJ, Myers MJ, Thieman TJ. Hip muscle weakness and overuse injuries in recreational runners. Clin J Sport Med. 2005;15(1):1421. PubMed ID: 15654186 doi:10.1097/00042752-200501000-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Orchard J, Marsden, J., Lord, S., Garlick, D. Preseason hamstring muscle weakness associated with hamstring muscle injury in Australian footballers. Am J Sports Med. 1997;25(1):8185. PubMed ID: 9006698 doi:10.1177/036354659702500116

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Lauersen JB, Andersen, T.E., Andersen, L.B. Strength training as superior, dose-dependent and safe prevention of acute and overuse sports injuries: a systematic review, qualitative analysis and meta-analysis. Br J Sports Med. 2018;52:15571563. PubMed ID: 30131332 doi:10.1136/bjsports-2018-099078

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Kollock RO, Andrews C, Johnston A, et al. A meta-analysis to determine if lower extremity muscle strengthening should be included in military knee overuse injury-prevention programs. J Athl Train. 2016;51(11):919926. PubMed ID: 27031886 doi:10.4085/1062-6050-51.4.09

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Baechle TR, Earle RW. Essentials of Strength Training and Conditioning. Human Kinetics; 2000.

All Time Past Year Past 30 Days
Abstract Views 1945 916 56
Full Text Views 147 99 3
PDF Downloads 109 41 1