A 3-Dimensional Gait Analysis of the Effects of Fatigue-Induced Reduced Foot Adductor Muscle Strength on the Walking of Healthy Subjects

in Journal of Applied Biomechanics

Click name to view affiliation

Rogerio Pessoto HirataSport Sciences—Performance and Technology, Faculty of Medicine, Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark

Search for other papers by Rogerio Pessoto Hirata in
Current site
Google Scholar
PubMed
Close
*
,
Alexander W. ErbsSport Sciences—Performance and Technology, Faculty of Medicine, Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark

Search for other papers by Alexander W. Erbs in
Current site
Google Scholar
PubMed
Close
,
Erik GadsbøllSport Sciences—Performance and Technology, Faculty of Medicine, Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark

Search for other papers by Erik Gadsbøll in
Current site
Google Scholar
PubMed
Close
,
Rannvá WintherSport Sciences—Performance and Technology, Faculty of Medicine, Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark

Search for other papers by Rannvá Winther in
Current site
Google Scholar
PubMed
Close
,
Sanne H. ChristensenSport Sciences—Performance and Technology, Faculty of Medicine, Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark

Search for other papers by Sanne H. Christensen in
Current site
Google Scholar
PubMed
Close
, and
Morten Bilde SimonsenSport Sciences—Performance and Technology, Faculty of Medicine, Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
Centre for Clinical Research, North Denmark Regional Hospital, Hjoerring, Denmark

Search for other papers by Morten Bilde Simonsen in
Current site
Google Scholar
PubMed
Close
Restricted access

Dysfunction of the tibialis posterior muscle is the most common cause of adult acquired flat foot. Tibialis posterior muscle weakness has been observed in several patient populations, including those in the early stages of rheumatoid arthritis. However, the influence of tibialis posterior weakness on gait mechanics is not fully understood, although gait instability has been reported. In 24 healthy participants, 3-dimension lower limb kinematics and kinetics during walking were evaluated bilaterally, before and after, a muscle fatigue protocol aiming to decrease the right foot adductor muscles strength, including the tibialis posterior muscle. The 3-dimension gait kinematics and kinetics were analyzed with statistical parametric mapping. The stance phase duration was increased for the right side. The right ankle external rotation moment decreased, and the left hip extension moment increased with reduced muscle strength compared with normal strength conditions. These changes are similar in patients with dysfunction in the tibialis posterior muscle, indicating that compensatory strategies observed in these patients might be related to the loss of tibialis posterior muscle strength. Such strategies may involve the unaffected side.

Hirata (rirata@hst.aau.dk) is corresponding author.

Supplementary Materials

    • Supplementary Material (PDF 757 KB)
  • Collapse
  • Expand
  • 1.

    Biswas A, Lemaire ED, Kofman J. Dynamic gait stability index based on plantar pressures and fuzzy logic. J Biomech. 2008;41(7):15741581. PubMed ID: 18395211 doi:10.1016/j.jbiomech.2008.02.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    van Leeuwen AM, van Dieen JH, Daffertshofer A, Bruijn SM. Active foot placement control ensures stable gait: effect of constraints on foot placement and ankle moments. PLoS One. 2020;15:e0242215. PubMed ID: 33332421 doi:10.1371/journal.pone.0242215

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Weijer RHA, Hoozemans MJM, van Dieen JH, Pijnappels M. Self-perceived gait stability modulates the effect of daily life gait quality on prospective falls in older adults. Gait Posture. 2018;62:475479. PubMed ID: 29674287 doi:10.1016/j.gaitpost.2018.04.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Kaye RA, Jahss MH. Tibialis posterior: a review of anatomy and biomechanics in relation to support of the medial longitudinal arch. Foot Ankle. 1991;11(4):244247. PubMed ID: 1855713 doi:10.1177/107110079101100414

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Blazkiewicz M, Wiszomirska I, Kaczmarczyk K, Naemi R, Wit A. Inter-individual similarities and variations in muscle forces acting on the ankle joint during gait. Gait Posture. 2017;58:166170. PubMed ID: 28783557 doi:10.1016/j.gaitpost.2017.07.119

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Bubra PS, Keighley G, Rateesh S, Carmody D. Posterior tibial tendon dysfunction: an overlooked cause of foot deformity. J Family Med Prim Care. 2015;4(1):2629. PubMed ID: 25810985 doi:10.4103/2249-4863.152245

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Michelson J, Easley M, Wigley FM, Hellmann D. Posterior tibial tendon dysfunction in rheumatoid arthritis. Foot Ankle Int. 1995;16(3):156161. PubMed ID: 7599734 doi:10.1177/107110079501600309

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Carroll M, Joyce W, Brenton-Rule A, Dalbeth N, Rome K. Assessment of foot and ankle muscle strength using hand held dynamometry in patients with established rheumatoid arthritis. J Foot Ankle Res. 2013;6(1):10. PubMed ID: 23522448 doi:10.1186/1757-1146-6-10

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Dogan SC, Hizmetli S, Hayta E, Kaptanoglu E, Erselcan T, Guler E. Sarcopenia in women with rheumatoid arthritis. Eur J Rheumatol. 2015;2(2):5761. PubMed ID: 27708927 doi:10.5152/eurjrheum.2015.0038

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Trnka HJ. Dysfunction of the tendon of tibialis posterior. J Bone Joint Surg Br. 2004;86:939946. PubMed ID: 15446514 doi:10.1302/0301-620x.86b7.15084

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Lanzillo B, Pappone N, Crisci C, di Girolamo C, Massini R, Caruso G. Subclinical peripheral nerve involvement in patients with rheumatoid arthritis. Arthritis Rheum. 1998;41(7):11961202. PubMed ID: 9663475 doi:10.1002/1529-0131(199807)41:73.0.CO;2-R

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Rabbito M, Pohl MB, Humble N, Ferber R. Biomechanical and clinical factors related to stage I posterior tibial tendon dysfunction. J Orthop Sports Phys Ther. 2011;41(10):776784. PubMed ID: 21765219 doi:10.2519/jospt.2011.3545

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Michelson J, Easley M, Wigley FM, Hellmann D. Foot and ankle problems in rheumatoid arthritis. Foot Ankle Int. 1994;15(11):608613. PubMed ID: 7849976 doi:10.1177/107110079401501106

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Munro R, Capell H. Prevalence of low body mass in rheumatoid arthritis: association with the acute phase response. Ann Rheum Dis. 1997;56(5):326329. PubMed ID: 9175935 doi:10.1136/ard.56.5.326

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Enoka RM, Duchateau J. Muscle fatigue: what, why and how it influences muscle function. J Physiol. 2008;586(1):1123. PubMed ID: 17702815 doi:10.1113/jphysiol.2007.139477

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Abboud J, Lardon A, Boivin F, Dugas C, Descarreaux M. Effects of muscle fatigue, creep, and musculoskeletal pain on neuromuscular responses to unexpected perturbation of the trunk: a systematic review. Front Hum Neurosci. 2017;10:667. PubMed ID: 28101013 doi:10.3389/Fnhum.2016.00667

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Amann M, Dempsey JA. Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. J Physiol. 2008;586(1):161173. PubMed ID: 17962334 doi:10.1113/jphysiol.2007.141838

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Kulig K, Burnfield JM, Requejo SM, Sperry M, Terk M. Selective activation of tibialis posterior: evaluation by magnetic resonance imaging. Med Sci Sports Exerc. 2004;36(5):862867. PubMed ID: 15126722 doi:10.1249/01.Mss.0000126385.12402.2e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Pohl MB, Rabbito M, Ferber R. The role of tibialis posterior fatigue on foot kinematics during walking. J Foot Ankle Res. 2010;3:6. PubMed ID: 20406465 doi:10.1186/1757-1146-3-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Ferber R, Pohl MB. Changes in joint coupling and variability during walking following tibialis posterior muscle fatigue. J Foot Ankle Res. 2011;4:6. PubMed ID: 21294889 doi:10.1186/1757-1146-4-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Grassi W, De Angelis R, Lamanna G, Cervini C. The clinical features of rheumatoid arthritis. Eur J Radiol. 1998;27(suppl 1):S18S24. PubMed ID: 9652497 doi:10.1016/S0720-048x(98)00038-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Weiss RJ, Wretenberg P, Stark A, et al. Gait pattern in rheumatoid arthritis. Gait Posture. 2008;28(2):229234. PubMed ID: 18226528 doi:10.1016/j.gaitpost.2007.12.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Johnson KA, Strom DE. Tibialis posterior tendon dysfunction. Clin Orthop Relat Res. 1989:239:196206.

  • 24.

    Ringleb SI, Kavros SJ, Kotajarvi BR, Hansen DK, Kitaoka HB, Kaufman KR. Changes in gait associated with acute stage II posterior tibial tendon dysfunction. Gait Posture. 2007;25(4):555564. PubMed ID: 16876415 doi:10.1016/j.gaitpost.2006.06.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Faul F, Erdfelder E, Lang AG, Buchner A, et al. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods. 2007;39:175191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    National Committee on Health Research Ethics. What to notify? 2022. https://www.nvk.dk/forsker/naar-du-anmelder/hvilke-projekter-skal-jeg-anmelde

    • Search Google Scholar
    • Export Citation
  • 27.

    Simonsen MB, Yurtsever A, Naesborg-Andersen K, et al. Tibialis posterior muscle pain effects on hip, knee and ankle gait mechanics. Hum Mov Sci. 2019;66:98108. PubMed ID: 30981150 doi:10.1016/j.humov.2019.04.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Tehan PE, Morpeth T, Williams AE, Dalbeth N, Rome K. “Come and live with my feet and you’ll understand”—a qualitative study exploring the experiences of retail footwear in women with rheumatoid arthritis. J Foot Ankle Res. 2019;12:15. PubMed ID: 30911335 doi:10.1186/s13047-019-0328-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Lund ME, Andersen MS, de Zee M, Rasmussen J. Scaling of musculoskeletal models from static and dynamic trials. Int Biomech. 2015;2(1):111. doi:10.1080/23335432.2014.993706

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Wu G, Siegler S, Allard P, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech. 2002;35(4):543548. PubMed ID: 11934426 doi:10.1016/s0021-9290(01)00222-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Pataky TC. One-dimensional statistical parametric mapping in python. Comput Methods Biomech Biomed Engin. 2012;15(3):295301. PubMed ID: 21756121 doi:10.1080/10255842.2010.527837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Stief F, Bohm H, Michel K, Schwirtz A, Doderlein L. Reliability and accuracy in three-dimensional gait analysis: a comparison of two lower body protocols. J Appl Biomech. 2013;29(1):105111. doi:10.1123/Jab.29.1.105

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Lamberto G, Martelli S, Cappozzo A, Mazza C. To what extent is joint and muscle mechanics predicted by musculoskeletal models sensitive to soft tissue artefacts? J Biomech. 2017;62:6876. PubMed ID: 27622973 doi:10.1016/j.jbiomech.2016.07.042

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Houck JR, Nomides C, Neville CG, Samuel Flemister A. The effect of stage II posterior tibial tendon dysfunction on deep compartment muscle strength: a new strength test. Foot Ankle Int. 2008;29(9):895902. PubMed ID: 18778667 doi:10.3113/FAI.2008.0895

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Martin V, Scholz JP, Schoner G. Redundancy, self-motion, and motor control. Neural Comput. 2009;21(5):13711414. PubMed ID: 19718817 doi:10.1162/neco.2008.01-08-698

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Simonsen MB, Yurtsever A, Naesborg-Andersen K, et al. A parametric study of effect of experimental tibialis posterior muscle pain on joint loading and muscle forces-implications for patients with rheumatoid arthritis? Gait Posture. 2019;72:102108. PubMed ID: 31185371 doi:10.1016/j.gaitpost.2019.06.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Barn R, Turner DE, Rafferty D, Sturrock RD, Woodburn J. Tibialis posterior tenosynovitis and associated pes plano valgus in rheumatoid arthritis: electromyography, multisegment foot kinematics, and ultrasound features. Arthritis Care Res. 2013;65(4):495502. PubMed ID: 22972604 doi:10.1002/acr.21859

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Maeda H, Ikoma K, Toyama S, et al. A kinematic and kinetic analysis of the hip and knee joints in patients with posterior tibialis tendon dysfunction; comparison with healthy age-matched controls. Gait Posture. 2018;66:228235. PubMed ID: 30212782 doi:10.1016/j.gaitpost.2018.08.040

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Fukuchi CA, Fukuchi RK, Duarte M. Effects of walking speed on gait biomechanics in healthy participants: a systematic review and meta-analysis. Syst Rev. 2019;8(1):153. PubMed ID: 31248456 doi:10.1186/s13643-019-1063-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Weiss RJ, Brostrom E, Stark A, Wick MC, Wretenberg P. Ankle/hindfoot arthrodesis in rheumatoid arthritis improves kinematics and kinetics of the knee and hip: a prospective gait analysis study. Rheumatology. 2007;46(6):10241028. PubMed ID: 17409135 doi:10.1093/rheumatology/kem017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Rantanen T, Avela J. Leg extension power and walking speed in very old people living independently. J Gerontol A Biol Sci Med Sci. 1997;52(4):225231. PubMed ID: 9224434 doi:10.1093/gerona/52a.4.m225

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Peterson CL, Cheng J, Kautz SA, Neptune RR. Leg extension is an important predictor of paretic leg propulsion in hemiparetic walking. Gait Posture. 2010;32(4):451456. PubMed ID: 20656492 doi:10.1016/j.gaitpost.2010.06.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Hodges PW, Tucker K. Moving differently in pain: a new theory to explain the adaptation to pain. Pain. 2011;152(suppl 3):S90S98. PubMed ID: 21087823 doi:10.1016/j.pain.2010.10.020

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1809 1809 40
Full Text Views 51 51 0
PDF Downloads 68 68 0