The Effects of Constraining Head Rotation on Eye and Whole-Body Coordination During Standing Turns at Different Speeds

in Journal of Applied Biomechanics

Click name to view affiliation

Mark HollandsBrain and Behaviour Lab, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, United Kingdom

Search for other papers by Mark Hollands in
Current site
Google Scholar
PubMed
Close
,
Fuengfa KhobkhunParkinson Movement and Research Collaboration Lab, Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand

Search for other papers by Fuengfa Khobkhun in
Current site
Google Scholar
PubMed
Close
*
,
Amornpan AjjimapornCollege of Sports Science and Technology, Mahidol University, Nakhon Pathom, Thailand

Search for other papers by Amornpan Ajjimaporn in
Current site
Google Scholar
PubMed
Close
,
Rebecca RobinsMicrosoft Corporation, Redmond, WA, USA

Search for other papers by Rebecca Robins in
Current site
Google Scholar
PubMed
Close
, and
Jim RichardsAllied Health Research Unit, University of Central Lancashire, Preston, United Kingdom

Search for other papers by Jim Richards in
Current site
Google Scholar
PubMed
Close
Restricted access

A limitation of the ability to rotate the head with respect to the upper body has been associated with turning problems; however, the extent of head constraints on whole-body coordination has not been fully determined. The aim of this study was to limit head on body rotation and observe the effects on whole-body coordination during standing turns at various speeds. Twelve participants completed standing turns at 180°. A Vicon motion system and a BlueGain Electrooculography system were used to record movement kinematics and measure horizontal eye movements, respectively. All participants were tested at 3 randomized speeds, and under 2 conditions with or without their head constrained using a head, neck, and chest brace which restricted neck movement. A repeated-measures analysis of variance found a significant main effect of turning speed on the onset latency of all segments, peak head–thorax angular separation, and step characteristics. Constraining the head rotation had multiple significant effects including delayed onset latency and decreased intersegmental coordination defined as peak head segmental angular separations, increased total step and step duration, and decreased step size. This indicates the contribution of speed, head, and neck constraints, which have been associated with falls during turning and whole-body coordination.

Khobkhun (fuengfa.kho@mahidol.edu) is corresponding author.

Supplementary Materials

    • Supplementary Material S1 (PDF 229 KB)
    • Supplementary Material S2 (PDF 259 KB)
  • Collapse
  • Expand
  • 1.

    Hollands MA, Ziavra NV, Bronstein AM. A new paradigm to investigate the roles of head and eye movements in the coordination of whole-body movements. Exp Brain Res. 2004;154(2):261266. PubMed ID: 14639471 doi:10.1007/s00221-003-1718-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Anastasopoulos D, Ziavra N, Hollands M, Bronstein A. Gaze displacement and inter-segmental coordination during large whole body voluntary rotations. Exp Brain Res. 2009;193(3):323336. PubMed ID: 19002676 doi:10.1007/s00221-008-1627-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Ashburn A, Kampshoff C, Burnett M, Stack E, Pickering RM, Verheyden G. Sequence and onset of whole-body coordination when turning in response to a visual trigger: comparing people with Parkinson’s disease and healthy adults. Gait Posture. 2014;39(1):278283. PubMed ID: 23973355 doi:10.1016/j.gaitpost.2013.07.128

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Bronstein AM, Hood JD. The cervico-ocular reflex in normal subjects and patients with absent vestibular function. Brain Res. 1986;373(1):399408. doi:10.1016/0006-8993(86)90355-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Jamal K, Leplaideur S, Leblanche F, Moulinet Raillon A, Honoré T, Bonan I. The effects of neck muscle vibration on postural orientation and spatial perception: a systematic review. Neurophysiol Clin. 2020;50(4):227267. PubMed ID: 31727405 doi:10.1016/j.neucli.2019.10.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Hollands MA, Sorensen KL, Patla AE. Effects of head immobilization on the coordination and control of head and body reorientation and translation during steering. Exp Brain Res. 2001;140(2):223233. PubMed ID: 11521154 doi:10.1007/s002210100811

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Reed-Jones RJ, Hollands MA, Reed-Jones JG, Vallis LA. Visually evoked whole-body turning responses during stepping in place in a virtual environment. Gait Posture. 2009;30(3):317321. PubMed ID: 19560360 doi:10.1016/j.gaitpost.2009.06.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Ambati VNP, Murray NG, Saucedo F, Powell DW, Reed-Jones RJ. Constraining eye movement when redirecting walking trajectories alters turning control in healthy young adults. Exp Brain Res. 2013;226(4):549556. doi:10.1007/s00221-013-3466-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Forsell C, Conradsson D, Paquette C, Franzén E. Reducing gait speed affects axial coordination of walking turns. Gait Posture. 2017;54:7175. PubMed ID: 28273601 doi:10.1016/j.gaitpost.2017.02.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Robins RK, Hollands MA. The effects of constraining vision and eye movements on whole-body coordination during standing turns. Exp Brain Res. 2017;235(12):35933603. PubMed ID: 28884336 doi:10.1007/s00221-017-5079-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Anastasopoulos D, Ziavra N, Savvidou E, Bain P, Bronstein AM. Altered eye-to-foot coordination in standing parkinsonian patients during large gaze and whole-body reorientations. Mov Disord. 2011;26(12):22012211. PubMed ID: 21661049 doi:10.1002/mds.23798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Faul F, Erdfelder E, Buchner A, Lang A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods. 2009;41,11491160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Bengevoord A, Vervoort G, Spildooren J, et al. Center of mass trajectories during turning in patients with Parkinson’s disease with and without freezing of gait. Gait Posture. 2016;43:5459. PubMed ID: 26669952 doi:10.1016/j.gaitpost.2015.10.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Neggers SF, Bekkering H. Gaze anchoring to a pointing target is present during the entire pointing movement and is driven by a non-visual signal. J Neurophysiol. 2001;86(2):961970. PubMed ID: 11495964 doi:10.1152/jn.2001.86.2.961

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Rand MK. Segment interdependency and gaze anchoring during manual two-segment sequences. Exp Brain Res. 2014;232(9):27532765. PubMed ID: 24770857 doi:10.1007/s00221-014-3951-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Hollands MA, Marple-Horvat DE, Henkes S, Rowan AK. Human eye movements during visually guided stepping. J Mot Behav. 1995;27(2):155163. PubMed ID: 12736124 doi:10.1080/00222895.1995.9941707

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Hollands MA, Marple-Horvat DE. Coordination of eye and leg movements during visually guided stepping. J Mot Behav. 2001;33(2):205216. PubMed ID: 11404215 doi:10.1080/00222890109603151

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Patla AE. Understanding the roles of vision in the control of human locomotion. Gait Posture. 1997;5(1):5469. doi:10.1016/S0966-6362(96)01109-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Rodriguez R, Crane BT. Effect of range of heading differences on human visual-inertial heading estimation. Exp Brain Res. 2019;237(5):12271237. PubMed ID: 30847539 doi:10.1007/s00221-019-05506-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Ivanenko YP, Grasso R, Lacquaniti F. Neck muscle vibration makes walking humans accelerate in the direction of gaze. J Physiol. 2000;525(3):803814. doi:10.1111/j.1469-7793.2000.t01-1-00803.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Bove M, Diverio M, Pozzo T, Schieppati M. Neck muscle vibration disrupts steering of locomotion. J Appl Physiol. 2001;91(2):581588. PubMed ID: 11457768 doi:10.1152/jappl.2001.91.2.581

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Bove M, Courtine G, Schieppati M. Neck muscle vibration and spatial orientation during stepping in place in humans. J Neurophysiol. 2002;88(5):22322241. PubMed ID: 12424265 doi:10.1152/jn.00198.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Vaugoyeau M, Viallet F, Mesure S, Massion J. Coordination of axial rotation and step execution: deficits in Parkinson’s disease. Gait Posture. 2003;18(3):150157. PubMed ID: 14667948 doi:10.1016/S0966-6362(03)00034-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Mak MK, Patla AE, Hui-Chan C. Sudden turn during walking is impaired in people with Parkinson’s disease. Exp Brain Res. 2008;190(1):4351. PubMed ID: 18528689 doi:10.1007/s00221-008-1446-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Stack EL, Ashburn AM. Dysfunctional turning in Parkinson’s disease. Disabil Rehabil. 2008;30(16):12221229. PubMed ID: 18608364 doi:10.1080/09638280701829938

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Akram S, Frank JS, Jog M. Parkinson’s disease and segmental coordination during turning: I. Standing turns. Can J Neurol Sci. 2013;40(4):512519. PubMed ID: 23786733 doi:10.1017/S0317167100014591

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Crenna P, Carpinella I, Rabuffetti M, et al. The association between impaired turning and normal straight walking in Parkinson’s disease. Gait Posture. 2007;26(2):172178. PubMed ID: 17532636 doi:10.1016/j.gaitpost.2007.04.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Hong M, Perlmutter JS, Earhart GM. A kinematic and electromyographic analysis of turning in people with Parkinson disease. Neurorehabil Neural Repair. 2009;23(2):166176. PubMed ID: 18981189 doi:10.1177/1545968308320639

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Solomon D, Kumar V, Jenkins RA, Jewell J. Head control strategies during whole-body turns. Exp Brain Res. 2006;173(3):475486. PubMed ID: 16506002 doi:10.1007/s00221-006-0393-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Akram S, Frank JS, Jog M. Parkinson’s disease and segmental coordination during turning: II. Walking turns. Can J Neurol Sci. 2013;40(4):520526. PubMed ID: 23786734 doi:10.1017/S0317167100014608

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Lohnes CA, Earhart GM. Saccadic eye movements are related to turning performance in Parkinson disease. J Parkinson Dis. 2011;1(1):109118. doi:10.3233/JPD-2011-11019

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 448 448 161
Full Text Views 287 287 20
PDF Downloads 242 242 21