Differences in Muscle Demand and Joint Contact Forces Between Running and Skipping

in Journal of Applied Biomechanics

Click name to view affiliation

Sarah A. RoelkerDepartment of Kinesiology, University of Massachusetts Amherst, Amherst, MA, USA

Search for other papers by Sarah A. Roelker in
Current site
Google Scholar
PubMed
Close
*
,
Paul DeVitaDepartment of Kinesiology, East Carolina University, Greenville, NC, USA

Search for other papers by Paul DeVita in
Current site
Google Scholar
PubMed
Close
,
John D. WillsonDepartment of Physical Therapy, East Carolina University, Greenville, NC, USA

Search for other papers by John D. Willson in
Current site
Google Scholar
PubMed
Close
, and
Richard R. NeptuneWalker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA

Search for other papers by Richard R. Neptune in
Current site
Google Scholar
PubMed
Close
Restricted access

Skipping has been proposed as a viable cross-training exercise to running due to its lower knee contact forces and higher whole-body energy expenditure. However, how individual muscle forces, energy expenditure, and joint loading are affected by differences in running and skipping mechanics remains unclear. The purpose of this study was to compare individual muscle forces, energy expenditure, and lower extremity joint contact forces between running and skipping using musculoskeletal modeling and simulations of young adults (n = 5) performing running and skipping at 2.5 m·s−1 on an instrumented treadmill. In agreement with previous work, running had greater knee and patella contact forces than skipping which was accompanied by greater knee extensor energetic demand. Conversely, skipping had greater ankle contact forces and required greater energetic demand from the uniarticular ankle plantarflexors. There were no differences in hip contact forces between gaits. These findings further support skipping as a viable alternative to running if the primary goal is to reduce joint loading at the commonly injured patellofemoral joint. However, for those with ankle injuries, skipping may not be a viable alternative due to the increased ankle loads. These findings may help clinicians prescribe activities most appropriate for a patient’s individual training or rehabilitation goals.

Supplementary Materials

    • Supplementary Material (PDF 666 KB)
  • Collapse
  • Expand
  • 1.

    Minetti AE. The biomechanics of skipping gaits: a third locomotion paradigm? Proc R Soc B Biol Sci. 1998;265(1402):12271235. doi:10.1098/rspb.1998.0424

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Johnson ST, Golden GM, Mercer JA, Mangus BC, Hoffman MA. Ground-reaction forces during form skipping and running. J Sport Rehabil. 2005;14(4):338345. doi:10.1123/jsr.14.4.338

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Gamma SC, Baker RT, Iorio S, Nasypany A, Seegmiller JG. A total motion release warm-up improves dominant arm shoulder internal and external rotation in baseball players. Int J Sports Phys Ther. 2014;9(4):509517. http://www.ncbi.nlm.nih.gov/pubmed/25133079%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4127513

    • Search Google Scholar
    • Export Citation
  • 4.

    Somboonwong J, Chutimakul L, Sanguanrungsirikul S. Core temperature changes and sprint performance of elite female soccer players after a 15-minute warm-up in a hot-humid environment. J Strength Cond Res. 2015;29(1):262269. doi:10.1519/01.JSC.0000491321.12969.1d

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    McGowan CJ, Pyne DB, Raglin JS, Thompson KG, Rattray B. Current warm-up practices and contemporary issues faced by elite swimming coaches. J Strength Cond Res. 2016;30(12):34713480. doi:10.1519/JSC.0000000000001443

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    McDonnell J, Willson JD, Zwetsloot KA, Houmard J, DeVita P. Gait biomechanics of skipping are substantially different than those of running. J Biomech. 2017;64:180185. PubMed ID: 29074289 doi:10.1016/j.jbiomech.2017.09.039

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    McDonnell J, Zwetsloot KA, Houmard J, DeVita P. Skipping has lower knee joint contact forces and higher metabolic cost compared to running. Gait Posture. 2019;70(September 2018):414419. PubMed ID: 30986589 doi:10.1016/j.gaitpost.2019.03.028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Minetti AE, Pavei G, Biancardi CM. The energetics and mechanics of level and gradient skipping: preliminary results for a potential gait of choice in low gravity environments. Planet Space Sci. 2012;74(1):142145. doi:10.1016/j.pss.2012.06.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Francis P, Whatman C, Sheerin K, Hume P, Johnson MI. The proportion of lower limb running injuries by gender, anatomical location and specific pathology: a systematic review. J Sport Sci Med. 2019;18(1):2131.

    • Search Google Scholar
    • Export Citation
  • 10.

    Paluska SA. An overview of hip injuries in running. Sports Med. 2005;35(11):9911014. doi:10.2165/00007256-200535110-00005

  • 11.

    Barr KP, Harrast MA. Evidence-based treatment of foot and ankle injuries in runners. Phys Med Rehabil Clin N Am. 2005;16(3):779799. PubMed ID: 16005403 doi:10.1016/j.pmr.2005.02.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Galois L, Etienne S, Grossin L, et al. Dose-response relationship for exercise on severity of experimental osteoarthritis in rats: a pilot study. Osteoarthr Cartil. 2004;12(10):779786. doi:10.1016/j.joca.2004.06.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Ni G-X, Lei L, Zhou Y-Z. Intensity-dependent effect of treadmill running on lubricin metabolism of rat articular cartilage. 2012;14(6):110. doi:10.1186/ar4101

    • Search Google Scholar
    • Export Citation
  • 14.

    Maly MR, Robbins SM, Stratford PW, Birmingham TB, Callaghan JP. Cumulative knee adductor load distinguishes between healthy and osteoarthritic knees—a proof of principle study. Gait Posture. 2013;37(3):397401. PubMed ID: 22995753 doi:10.1016/J.GAITPOST.2012.08.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Voinier D, Neogi T, Stefanik JJ, et al. Using cumulative load to explain how body mass index and daily walking relate to worsening knee cartilage damage over two years: the MOST study. Arthritis Rheumatol. 2020;72(6):957. doi:10.1002/ART.41181

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Van Ginckel A, Verdonk P, Victor J, Witvrouw E. Cartilage status in relation to return to sports after anterior cruciate ligament reconstruction. Am J Sports Med. 2013;41(3):550559. PubMed ID: 23380160 doi:10.1177/0363546512473568

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Esculier JF, Jarrett M, Krowchuk NM, et al. Cartilage recovery in runners with and without knee osteoarthritis: a pilot study. Knee. 2019;26(5):10491057. PubMed ID: 31434630 doi:10.1016/J.KNEE.2019.07.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Alexander JLN, Willy RW, Culvenor AG, Barton CJ. Infographic. Running Myth: recreational running causes knee osteoarthritis. Br J Sports Med. 2022;56(6):357358. PubMed ID: 34819274 doi:10.1136/BJSPORTS-2021-104342

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Hamner SR, Seth A, Delp SL. Muscle contributions to propulsion and support during running. J Biomech. 2010;43(14):27092716. PubMed ID: 20691972 doi:10.1016/j.jbiomech.2010.06.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Sasaki K, Neptune RR. Differences in muscle function during walking and running at the same speed. J Biomech. 2006;39(11):20052013. PubMed ID: 16129444 doi:10.1016/j.jbiomech.2005.06.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Sasaki K, Neptune RR. Muscle mechanical work and elastic energy utilization during walking and running near the preferred gait transition speed. Gait Posture. 2006;23(3):383390. PubMed ID: 16029949 doi:10.1016/j.gaitpost.2005.05.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    De Vita P, Hortobagyi T. Functional knee brace alters predicted knee muscle and joint forces in people with ACL reconstruction during walking. J Appl Biomech. 2001;17(4):297311. doi:10.1123/jab.17.4.297

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Messier SP, Legault C, Loeser RF, et al. Does high weight loss in older adults with knee osteoarthritis affect bone-on-bone joint loads and muscle forces during walking? Osteoarthr Cartil. 2011;19(3):272280. doi:10.1016/j.joca.2010.11.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Sangeux M, Polak J. A simple method to choose the most representative stride and detect outliers. Gait Posture. 2015;41(2):726730. PubMed ID: 25533050 doi:10.1016/j.gaitpost.2014.12.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL, Rosen JM. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng. 1990;37(8):757767. PubMed ID: 2210784 doi:10.1109/10.102791

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Delp SL, Anderson FC, Arnold AS, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):19401950. PubMed ID: 18018689 doi:10.1109/TBME.2007.901024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Thelen DG, Anderson FC, Delp SL. Generating dynamic simulations of movement using computed muscle control. J Biomech. 2003;36(3):321328. PubMed ID: 12594980 doi:10.1016/S0021-9290(02)00432-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Thelen DG, Anderson FC. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J Biomech. 2006;39(6):11071115. PubMed ID: 16023125 doi:10.1016/j.jbiomech.2005.02.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Roelker SA, Kautz SA, Neptune RR. Muscle contributions to mediolateral and anteroposterior foot placement during walking. J Biomech. 2019;95:109310. PubMed ID: 31451199 doi:10.1016/j.jbiomech.2019.08.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Umberger BR, Gerritsen KGM, Martin PE. A model of human muscle energy expenditure. Comput Methods Biomech Biomed Engin. 2003;6(2):99111. PubMed ID: 12745424 doi:10.1080/1025584031000091678

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Umberger BR. Stance and swing phase costs in human walking. J R Soc Interface. 2010;7(50):13291340. PubMed ID: 20356877 doi:10.1098/rsif.2010.0084

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Steele KM, DeMers MS, Schwartz MH, Delp SL. Compressive tibiofemoral force during crouch gait. Gait Posture. 2012;35(4):556560. PubMed ID: 22206783 doi:10.1016/j.gaitpost.2011.11.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Bigland-Ritchie B, Woods JJ. Integrated electromyogram and oxygen uptake during positive and negative work. J Physiol. 1976;260(2):267277. doi:10.1113/jphysiol.1976.sp011515

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Rooney BD, Derrick TR. Joint contact loading in forefoot and rearfoot strike patterns during running. J Biomech. 2013;46(13):22012206. PubMed ID: 23910541 doi:10.1016/j.jbiomech.2013.06.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Messier SP, Legault C, Schoenlank CR, Newman JJ, Martin DF, Devita P. Risk factors and mechanisms of knee injury in runners. Med Sci Sports Exerc. 2008;40(11):18731879. PubMed ID: 18845979 doi:10.1249/MSS.0b013e31817ed272

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Glitsch U, Baumann W. The three-dimensional determination of internal loads in the lower extremity. J Biomech. 1997;30(11–12):11231131. PubMed ID: 9456380 doi:10.1016/S0021-9290(97)00089-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Roelker SA, Caruthers EJ, Hall RK, Pelz NC, Chaudhari AMW, Siston RA. Effects of optimization technique on simulated muscle activations and forces. 2020;36(4):259278.

    • Search Google Scholar
    • Export Citation
  • 38.

    Willy RW, Meardon SA, Schmidt A, Blaylock NR, Hadding SA, Willson JD. Changes in tibiofemoral contact forces during running in response to in-field gait retraining. J Sports Sci. 2016;34(17):16021611. PubMed ID: 26679058 doi:10.1080/02640414.2015.1125517

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1114 1114 134
Full Text Views 338 338 25
PDF Downloads 256 256 26