Relationship Between Shoulder Pain and Joint Reaction Forces and Muscle Moments During 2 Speeds of Wheelchair Propulsion

in Journal of Applied Biomechanics

Click name to view affiliation

Li-Shan ChangDivision of Physical Therapy, Department of Rehabilitation, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan

Search for other papers by Li-Shan Chang in
Current site
Google Scholar
PubMed
Close
,
Xiong-Wen KeWuhan Sports University, Wuhan, China
Department of Medical Sciences, Health and Management, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, USA

Search for other papers by Xiong-Wen Ke in
Current site
Google Scholar
PubMed
Close
,
Weerawat LimroongreungratCollege of Sports Science and Technology, Mahidol University, Nakhon Pathom, Thailand

Search for other papers by Weerawat Limroongreungrat in
Current site
Google Scholar
PubMed
Close
, and
Yong Tai WangDepartment of Medical Sciences, Health and Management, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, USA

Search for other papers by Yong Tai Wang in
Current site
Google Scholar
PubMed
Close
*
Restricted access

The purpose of this study was to determine shoulder joint reaction forces and muscle moments during 2 speeds (1.3 and 2.2 m/s) of wheelchair propulsion and to investigate the relationship between joints reaction forces, muscle moments, and shoulder pain. The measurements were obtained from 20 manual wheelchair users. A JR3 6-channel load sensor (±1% error) and a Qualisys system were used to record 3-dimensional pushrim kinetics and kinematics. A 3-dimensional inverse dynamic model was generated to compute joint kinetics. The results demonstrated significant differences in shoulder joint forces and moments (P < .01) between the 2 speeds of wheelchair propulsion. The greatest peak shoulder joint forces during the drive phase were anterior directed (Fy, 184.69 N), and the greatest joint moment was the shoulder flexion direction (flexion moment, 35.79 N·m) at 2.2 m/s. All the shoulder joint reaction forces and flexion moment were significantly (P < .05) related to shoulder pain index. The forces combined in superior and anterior direction found at the shoulder joint may contribute to the compression of subacromial structure and predispose manual wheelchair users to potential rotator cuff impingement syndrome.

  • Collapse
  • Expand
  • 1.

    Brault MW. Americans With Disabilities: 2010. US Department of Commerce, Economics and Statistics Administration; 2012.

  • 2.

    Sabick BR, Kotajarvi BR, An KN. A new method to quantify demand on the upper extremity during manual wheelchair propulsion. Arch Phys Med Rehabil. 2004;85:11511159. doi:10.1016/j.apmr.2003.10.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Chow JW, Levy CE. Wheelchair propulsion biomechanics and wheelers’ quality of life: an exploratory review. Disabil Rehabil: Assist Technol. 2011;6(5):365377. doi:10.3109/17483107.2010.525290

    • Search Google Scholar
    • Export Citation
  • 4.

    Klika V. Biomechanics in Applications. IntechOpen; 2011.

  • 5.

    Mason B, Warner M, Briley S, Goosey-Tolfrey V, Vegter R. Managing shoulder pain in manual wheelchair users: a scoping review of conservative treatment interventions. Clin Rehabil. 2020;34(6):741753. doi:10.1177/0269215520917437

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Requejo P, Mulroy S, Haubert L, Newsam C, Gronley J, Perry J. Evidence-based strategies to preserve shoulder function in manual wheelchair users with spinal cord injury. Top Spinal Cord Inj Rehabil. 2008;13(4):86119. doi:10.1310/sci1304-86

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Rodgers MM, Tummarakota S, Lieh J. Three-dimensional dynamic analysis of wheelchair propulsion. J Appl Biomech. 1998;14(1):8092. https://corescholar.libraries.wright.edu/mme/1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Moon Y, Jayaraman C, Hsu I, Rice I, Hsiao-Wecksler E, Sosnoff J. Variability of peak shoulder force during wheelchair propulsion in manual wheelchair users with and without shoulder pain. Clin Biomech. 2013;28(9–10):967972. doi:10.1016/j.clinbiomech.2013.10.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Heyward OW, Vegter RJK, de Groot S, van der Woude LHV. Shoulder complaints in wheelchair athletes: a systematic review. PLoS One. 2017;12(11):e0188410. doi:10.1371/journal.pone.0188410

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Helm FCT, Veeger HEJ. Quasi-static analysis of muscle forces in the shoulder mechanism during wheelchair propulsion. J Biomech. 1996;29(1):3952. doi:10.1016/0021-9290(95)00026-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Morrow MM, van Straaten MG, Murthy NS, et al. Detailed shoulder MRI findings in manual wheelchair users with shoulder pain. Biomed Res Int. 2014;769649. doi:10.1155/2014/769649

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Mulroy SJ, Gronley JK, Newsam CJ, Perry J. Electromyographic activity of shoulder muscles during wheelchair propulsion by paraplegic persons. Arch Phys Med Rehabil. 1996;77(2):187193. doi:10.1016/s0003-9993(96)90166-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Boninger ML, Cooper RA, Robertson RN, Shimada SD. Three-dimensional pushrim forces during two speeds of wheelchair propulsion. Am J Phys Med Rehabil. 1997;76(5):420426. doi:10.1097/00002060-199709000-00013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Cooper RA, Boninger ML, Shimada SD, Lawrence BM. Glenohumeral joint kinematics and kinetics for three coordinate system representations during wheelchair propulsion. Am J Phys Med Rehabil. 1999;78(5):435446. doi:10.1097/00002060-199909000-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Holloway CS, Symonds A, Suzuki T, Gall A, Smitham P, Taylor S. Linking wheelchair kinetics to glenohumeral joint demand during everyday accessibility activities. Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:24782481. doi:10.1109/EMBC.2015.7318896

    • Search Google Scholar
    • Export Citation
  • 16.

    Silfverskiolod J, Waters RL. Shoulder pain and functional disability in spinal cord injury patients. Clin Orthop Relat Res. 1991;272:141145. PubMed ID: 1934724

    • Search Google Scholar
    • Export Citation
  • 17.

    Robertson RN, Boninger ML, Cooper RA, Shimada SD. Pushrim forces and joint kinetics during wheelchair propulsion. Arch Phys Med Rehabil. 1996;77(9):856864. doi:10.1016/s0003-9993(96)90270-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Kulig K, Rao SS, Mulroy SJ, et al. Shoulder joint kinetics during the push phase of wheelchair propulsion. Clin Orthop Relat Res. 1998;354:132143. doi:10.1097/00003086-199809000-00016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Curtis KA, Tyner TM, Zachary L. Effect of a standard exercise protocol on shoulder pain in long-term wheelchair users. Spinal Cord. 1999;37(6):421429. doi:10.1038/sj.sc.3100860

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Jahanian O, Van Straaten MG, Goodwin BM, et al. Shoulder magnetic resonance imaging findings in manual wheelchair users with spinal cord injury. J Spinal Cord Med. 2022;45(4):564574. doi:10.1080/10790268.2020.1834774

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Sarraj AR, Massarelli R, Rigal F, et al. Energy expenditure of two types of manual wheelchair propulsion. Open Rehabil J. 2008;1:3842. doi:10.2174/1874943700801010038

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Chow JW, Millikan TA, Carlton LG, Chae W, Morse MI. Effect of resistance load on biomechanical characteristics of racing wheelchair propulsion over a roller system. J Biomech. 2000;33(5):601608. doi:10.1016/s0021-9290(99)00211-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Cooper RA. A system approach to the modeling of racing wheelchair propulsion. J Rehabil Res Dev. 1990; 27(2):151162. doi:10.1682/jrrd.1990.04.0151

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Wang YT, Deutsch H, Hedrich B, Martin M, Millikan T. Three-dimensional kinematics of wheelchair propulsion—across racing speed condition. J Adapt Phys Activ Q. 1995;17:7889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Sosnoff JJ, Rice IM, Hsiao-Wecksler ET, Hsu IM, Jayaraman C, Moon Y. Variability in wheelchair propulsion: a new window into an old problem. Front Bioeng Biotechnol. 2015;3:105. doi:10.3389/fbioe.2015.00105

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Fairbairn JR, Huxel Bliven KC. Incidence of shoulder injury in elite wheelchair athletes differ between sports: a critically appraised topic. J Sport Rehabil. 2019;28(3):294298. doi:10.1123/jsr.2017-0360

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Lin HT, Su FC, Wu HW, An KN. Muscle forces analysis in the shoulder mechanism during wheelchair propulsion. Proc Inst Mech Eng H. 2004;218(4):213221. doi:10.1243/0954411041561027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Slowik JS, McNitt-Gray JL, Requejo PS, Mulroy SJ, Neptune RR. Compensatory strategies during manual wheelchair propulsion in response to weakness in individual muscle groups: a simulation study. Clin Biomech. 2016;33:3441. doi:10.1016/j.clinbiomech.2016.02.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Rankin JW, Kwarciak AM, Richter WM, Neptune RR. The influence of wheelchair propulsion technique on upper extremity muscle demand: a simulation study. Clin Biomech. 2012;27(9):879886. doi:10.1016/j.clinbiomech.2012.07.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Richter WM, Rodriguez R, Woods KR, Axelson PW. Stroke pattern and handrim biomechanics for level and uphill wheelchair propulsion at self-selected speeds. Arch Phys Med Rehabil. 2007;88(1):8187. doi:10.1016/j.apmr.2006.09.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Koontz AM, Cooper RA, Boninger ML, Souza AL, Fay BT. Shoulder kinematics and kinetics during two speeds of wheelchair propulsion. J Rehabil Res Dev. 2002;39(6):635649. PubMed ID: 17943666

    • Search Google Scholar
    • Export Citation
  • 32.

    Gorce P, Louis N. Wheelchair propulsion kinematics in beginners and expert users: influence of wheelchair settings. Clin Biomech. 2012;27(1):715. doi:10.1016/j.clinbiomech.2011.07.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Boninger ML, Souza A, Cooper RA, Fitzgerald SG, Koontz AM, Fay BT. Propulsion patterns and pushrim biomechanics in manual wheelchair propulsion. Arch Phys Med Rehabil., 2002;83(5):718723. doi:10.1053/apmr.2002.32455

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Shimada SD, Robertson RN, Boninger ML, Cooper RA. Kinematic characterization of wheelchair propulsion. J Rehabil Res Dev. 1998;35(2):210218. PubMed ID: 9651893

    • Search Google Scholar
    • Export Citation
  • 35.

    Curtis KA, Roach KE, Applegate EB, et al. Development of the wheelchair use’s shoulder pain index (WUSPI). Paraplegia. 1995;33(5):290293. doi:10.1038/sc.1995.65

    • Search Google Scholar
    • Export Citation
  • 36.

    Wu HW, Bergluid LJ, Su FC, et al. An instrumented wheel for kinetic analysis of wheelchair propulsion—technical briefs. J Biomech Eng. 1998;120(4):533535. doi:10.1115/1.2798024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Veeger HEJ, van Woude LHV, Rozendal RH. Effect of handrim velocity on mechanical efficiency in wheelchair propulsion. Med Sci Sports Exerc. 1991;24(1):100107. PubMed ID: 1548983

    • Search Google Scholar
    • Export Citation
  • 38.

    Rodgers MM, Gayle GW, Figoni SF, Kobayashi M, Lieh J, Glaser RM. Biomechanics of wheelchair propulsion during fatigue. Arch Phys Med Rehabil. 1994;75(1):8593. PubMed ID: 8291970

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Dallmeijer AJ, van Woude LHV, Veeger HEJ, Hollander AP. Effectiveness of force application in manual wheelchair propulsion in persons with spinal cord injuries. Am J Phys Med Rehabil. 1998;77(3):213221. doi:10.1097/00002060-199805000-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Sanderson D, Sommer HJ. Kinematic features of wheelchair propulsion. J Biomech. 1985;18(6):423429. doi:10.1016/0021-9290(85)90277-5

  • 41.

    Wu G, Cavanagh PR. ISB recommendations for standardization in the reporting of kinematic data. J Biomech. 1995;28(10):12571261. doi:10.1016/0021-9290(95)00017-c

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Allard P, Stokes AF, Bianchi JP. Three-Dimensional Analysis of Human Movement. Human Kinetics; 1995.

  • 43.

    Winter DA. Biomechanics and Motor Control of Human Movement. John Wiley & Sons, Inc; 1990.

  • 44.

    Wang YT. Vrongistinos KD, Xu D. Consistency of cycle movement pattern and maximum angular velocity during wheelchair racing. J Appl Biomech. 2008;24:280287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Curtis KA, Drysdale GA, Lanza RD, Kolber M, Vitolo RS, West R. Shoulder pain in wheelchair users with tetraplegia and paraplegia. Arch Phys Med Rehabil. 1999;80(4):453457. doi:10.1016/s0003-9993(99)90285-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Collinger JL, Boninger ML, Koontz AM, et al. Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia. Arch Phys Med Rehabil. 2008;89(4):667676. doi:10.1016/j.apmr.2007.09.052

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Finley MA, Rodgers MM. Effect of 2-speed geared manual wheelchair propulsion on shoulder pain and function. Arch Phys Med Rehabil. 2007;88(12):16221627. doi:10.1016/j.apmr.2007.07.045

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Mercer JL, Boninger M, Koontz A, Ren D, Dyson-Hudson T, Cooper RA. Shoulder joint kinetics and pathology in manual wheelchair users. Clin Biomech. 2006;21(8):781789. doi:10.1016/j.clinbiomech.2006.04.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Finley MA, Rodgers MM. Prevalence and identification of shoulder pathology in athletic and nonathletic wheelchair users with shoulder pain: a pilot study. J Rehabil Res Dev. 2004;41(3B):395402. doi:10.1682/jrrd.2003.02.0022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Khalili M, Kryt G, Mortenson WB, Van der Loos HFM, Borisoff J. Comparison of manual wheelchair and pushrim-activated power-assisted wheelchair propulsion characteristics during common over-ground maneuvers. Sensors. 2021;21(21):7008. doi:10.3390/s21217008

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 430 430 148
Full Text Views 263 263 29
PDF Downloads 215 215 29