Differences in Knee Extensors’ Muscle–Tendon Unit Passive Stiffness, Architecture, and Force Production in Competitive Cyclists Versus Runners

in Journal of Applied Biomechanics

Click name to view affiliation

Leonardo CesanelliDepartment of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania

Search for other papers by Leonardo Cesanelli in
Current site
Google Scholar
PubMed
Close
*
,
Sigitas KamandulisInstitute of Sports Science and Innovation, Lithuanian Sports University, Kaunas, Lithuania

Search for other papers by Sigitas Kamandulis in
Current site
Google Scholar
PubMed
Close
,
Nerijus EimantasInstitute of Sports Science and Innovation, Lithuanian Sports University, Kaunas, Lithuania

Search for other papers by Nerijus Eimantas in
Current site
Google Scholar
PubMed
Close
, and
Danguole SatkunskieneDepartment of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania

Search for other papers by Danguole Satkunskiene in
Current site
Google Scholar
PubMed
Close
Restricted access

To describe the possible effects of chronic specific exercise training, the present study compared the anthropometric variables, muscle–tendon unit (MTU) architecture, passive stiffness, and force production capacity between a group of competitive cyclists and runners. Twenty-seven competitive male cyclists (n = 16) and runners (n = 11) participated. B-mode ultrasound evaluation of the vastus lateralis muscle and patellar tendon as well as passive stiffness of the knee extensors MTU were assessed. The athletes then performed a test of knee extensor maximal voluntary isometric contractions. Cyclists displayed greater thigh girths, vastus lateralis pennation angle and muscle thickness, patellar tendon cross-sectional area, and MTU passive stiffness than runners (P < .05). Knee extensor force production capacity also differed significantly, with cyclists showing greater values compared with runners (P < .05). Overall, the direct comparison of these 2 populations revealed specific differences in the MTU, conceivably related to the chronic requirements imposed through the training for the different disciplines.

  • Collapse
  • Expand
  • 1.

    Flück M, Hoppeler H. Molecular basis of skeletal muscle plasticity--from gene to form and function. Rev Physiol Biochem Pharmacol. 2003;146:159216. doi:10.1007/s10254-002-0004-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Schiaffino S, Reggiani C, Akimoto T, Blaauw B. Molecular mechanisms of skeletal muscle hypertrophy. J Neuromuscul Dis. 2021;8(2):169183. doi:10.3233/JND-200568

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Jorgenson KW, Phillips SM, Hornberger TA. Identifying the structural adaptations that drive the mechanical load-induced growth of skeletal muscle: a scoping review. Cells. 2020;9(7):1658. doi:10.3390/cells9071658

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Ema R, Akagi R, Wakahara T, Kawakami Y. Training-induced changes in architecture of human skeletal muscles: current evidence and unresolved issues. J Phys Fit Sports Med. 2016;5(1):3746. doi:10.7600/jpfsm.5.37

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Blazevich AJ. Adaptations in the passive mechanical properties of skeletal muscle to altered patterns of use. J Appl Physiol. 2019;126(5):14831491. doi:10.1152/japplphysiol.00700.2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Haun CT, Vann CG, Roberts BM, Vigotsky AD, Schoenfeld BJ, Roberts MD. A critical evaluation of the biological construct skeletal muscle hypertrophy: size matters but so does the measurement. Front Physiol. 2019;10:247. doi:10.3389/fphys.2019.00247

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Lieber RL, Binder-Markey BI. Biochemical and structural basis of the passive mechanical properties of whole skeletal muscle. J Physiol. 2021;599(16):38093823. doi:10.1113/JP280867

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Rassier DE, MacIntosh BR, Herzog W. Length dependence of active force production in skeletal muscle. J Appl Physiol. 1999;86(5):14451457. doi:10.1152/jappl.1999.86.5.1445

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Lieber RL, Ward SR. Skeletal muscle design to meet functional demands. Philos Trans R Soc B Biol Sci. 2011;366(1570):14661476. doi:10.1098/rstb.2010.0316

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Neto T, Freitas S, Vaz J, Silva AM, Mil-Homens P, Carita AI. Lower limb body composition is associated to knee passive extension torque-angle response. SpringerPlus. 2013;2:Article 403. doi:10.1186/2193-1801-2-403

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Ryan ED, Herda TJ, Costa PB, et al. Passive properties of the muscle-tendon unit: the influence of muscle cross-sectional area. Muscle Nerve. 2009;39(2):227229. doi:10.1002/mus.21218

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Suga T, Terada M, Tomoo K, et al. Association between plantar flexor muscle volume and dorsiflexion flexibility in healthy young males: ultrasonography and magnetic resonance imaging studies. BMC Sports Sci Med Rehabil. 2021;13(1):Article 8. doi:10.1186/s13102-021-00233-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Abe T, Kumagai K, Brechue WF. Fascicle length of leg muscles is greater in sprinters than distance runners. Med Sci Sports Exerc. 2000;32(6):11251129. doi:10.1097/00005768-200006000-00014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Lee HJ, Lee KW, Takeshi K, Lee YW, Kim HJ. Correlation analysis between lower limb muscle architectures and cycling power via ultrasonography. Sci Rep. 2021;11(1):5362. doi:10.1038/s41598-021-84870-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Muanjai P, Mickevicius M, Snieckus A, et al. Response of knee extensor muscle-tendon unit stiffness to unaccustomed and repeated high-volume eccentric exercise. Int J Environ Res Public Health. 2021;18(9):Article 4510. doi:10.3390/ijerph18094510

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Alegre LM, Ferri-Morales A, Rodriguez-Casares R, Aguado X. Effects of isometric training on the knee extensor moment-angle relationship and vastus lateralis muscle architecture. Eur J Appl Physiol. 2014;114(11):24372446. doi:10.1007/s00421-014-2967-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Franchi MV, Atherton PJ, Reeves ND, et al. Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiol. 2014;210(3):642654. doi:10.1111/apha.12225

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Franchi MV, Reeves ND, Narici MV. Skeletal muscle remodeling in response to eccentric vs. concentric loading: morphological, molecular, and metabolic adaptations. Front Physiol. 2017;8:447. doi:10.3389/fphys.2017.00447

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Herbert R. The passive mechanical properties of muscle and their adaptations to altered patterns of use. Aust J Physiother. 1988;34(3):141149. doi:10.1016/S0004-9514(14)60606-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Mendias CL, Schwartz AJ, Grekin JA, Gumucio JP, Sugg KB. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy. J Appl Physiol. 2017;122(3):571579. doi:10.1152/japplphysiol.00719.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Herzog W, Guimaraes AC, Anton MG, Carter-Erdman KA. Moment-length relations of rectus femoris muscles of speed skaters/cyclists and runners. Med Sci Sports Exerc. 1991;23(11):12891296. https://journals.lww.com/acsm-msse/Abstract/1991/11000/Moment_length_relations_of_rectus_femoris_muscles.15.aspx

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Brunkhorst L, Kielstein H. Comparison of anthropometric characteristics between professional triathletes and cyclists. Biol Sport. 2013;30(4):269273. doi:10.5604/20831862.1077552

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Stafilidis S, Arampatzis A. Muscle - tendon unit mechanical and morphological properties and sprint performance. J Sports Sci. 2007;25(9):10351046. doi:10.1080/02640410600951589

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Klich S, Ficek K, Krymski I, et al. Quadriceps and patellar tendon thickness and stiffness in elite track cyclists: an ultrasonographic and myotonometric evaluation. Front Physiol. 2020;11:607208. doi:10.3389/fphys.2020.607208

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Kordi M, Folland J, Goodall S, et al. Mechanical and morphological determinants of peak power output in elite cyclists. Scand J Med Sci Sports. 2020;30(2):227237. doi:10.1111/sms.13570

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Jeukendrup AE, Craig NP, Hawley JA. The bioenergetics of world class cycling. J Sci Med Sport. 2000;3(4):414433. doi:10.1016/s1440-2440(00)80008-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    World Medical Association. World medical association declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):21912194. doi:10.1001/jama.2013.281053

    • Search Google Scholar
    • Export Citation
  • 28.

    Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361374. doi:10.1016/s1050-6411(00)00027-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Akima H, Kinugasa R, Kuno S. Recruitment of the thigh muscles during sprint cycling by muscle functional magnetic resonance imaging. Int J Sports Med. 2005;26(4):245252. doi:10.1055/s-2004-821000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    da Silva JCL, Tarassova O, Ekblom MM, Andersson E, Rönquist G, Arndt A. Quadriceps and hamstring muscle activity during cycling as measured with intramuscular electromyography. Eur J Appl Physiol. 2016;116(9):18071817. doi:10.1007/s00421-016-3428-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Camic CL, Kovacs AJ, Enquist EA, McLain TA, Hill EC. Muscle activation of the quadriceps and hamstrings during incremental running. Muscle Nerve. 2015;52(6):10231029. doi:10.1002/mus.24901

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Miyamoto N, Hirata K, Inoue K, Hashimoto T. Muscle stiffness of the vastus lateralis in sprinters and long-distance runners. Med Sci Sports Exerc. 2019;51(10):20802087. doi:10.1249/MSS.0000000000002024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Monte A, Baltzopoulos V, Maganaris CN, Zamparo P. Gastrocnemius medialis and vastus lateralis in vivo muscle-tendon behavior during running at increasing speeds. Scand J Med Sci Sports. 2020;30(7):11631176. doi:10.1111/sms.13662

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Brughelli M, Cronin J, Nosaka K. Muscle architecture and optimum angle of the knee flexors and extensors: a comparison between cyclists and Australian Rules football players. J Strength Cond Res. 2010;24(3):717721. doi:10.1519/JSC.0b013e318197009a

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Bini RR, Bini AF. Potential factors associated with knee pain in cyclists: a systematic review. Open Access J Sports Med. 2018;9:99106. doi:10.2147/OAJSM.S136653

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Wiesinger HP, Rieder F, Kösters A, Müller E, Seynnes OR. Are sport-specific profiles of tendon stiffness and cross-sectional area determined by structural or functional integrity? PLoS One. 2016;11(6):e0158441. doi:10.1371/journal.pone.0158441

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Wiesinger HP, Rieder F, Kösters A, Müller E, Seynnes OR. Sport-specific capacity to use elastic energy in the patellar and Achilles tendons of elite athletes. Front Physiol. 2017;8:132. doi:10.3389/fphys.2017.00132

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Massey GJ, Balshaw TG, Maden-Wilkinson TM, Tillin NA, Folland JP. The influence of patellar tendon and muscle-tendon unit stiffness on quadriceps explosive strength in man. Exp Physiol. 2017;102(4):448461. doi:10.1113/EP086190

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Beggs, I., Bianchi, S., Bueno, A., et al. (2017) Musculoskeletal Ultrasound Technical Guidelines. European Society of Musculoskeletal Radiology. https://essr.org/subcommittees/ultrasound/

    • Search Google Scholar
    • Export Citation
  • 40.

    Sarto F, Spörri J, Fitze DP, Quinlan JI, Narici MV, Franchi MV. Implementing ultrasound imaging for the assessment of muscle and tendon properties in elite sports: practical aspects, methodological considerations and future directions. Sports Med. 2021;51(6):11511170. doi:10.1007/s40279-021-01436-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Skou ST, Aalkjaer JM. Ultrasonographic measurement of patellar tendon thickness—a study of intra- and interobserver reliability. Clin Imaging. 2013;37(5):934937. doi:10.1016/j.clinimag.2013.01.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Arias-Buría JL, Fernández-de-las-Peñas C, Rodríguez-Jiménez J, et al. Ultrasound characterization of patellar tendon in non-elite sport players with painful patellar tendinopathy: absolute values or relative ratios? A pilot study. Diagnostics. 2020;10(11):882. doi:10.3390/diagnostics10110882

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Krause F, Wilke J, Niederer D, Vogt L, Banzer W. Acute effects of foam rolling on passive stiffness, stretch sensation and fascial sliding: a randomized controlled trial. Hum Mov Sci. 2019;67:102514. doi:10.1016/j.humov.2019.102514

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. 2016;116(6):10911116. doi:10.1007/s00421-016-3346-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Whatman C, Knappstein A, Hume P. Acute changes in passive stiffness and range of motion post-stretching. Phys Ther Sport. 2006;7(4):195200. doi:10.1016/j.ptsp.2006.07.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Muanjai P, Jones DA, Mickevicius M, et al. The effects of 4 weeks stretching training to the point of pain on flexibility and muscle tendon unit properties. Eur J Appl Physiol. 2017;117(8):17131725. doi:10.1007/s00421-017-3666-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Jaric S. Muscle strength testing: use of normalisation for body size. Sports Med Auckl NZ. 2002;32(10):615631. doi:10.2165/00007256-200232100-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Castro J, Livino de Carvalho K, Silva PE, et al. Intra- and inter-rater reproducibility of ultrasound imaging of patellar and quadriceps tendons in critically ill patients. PLoS One. 2019;14(6):e219057. doi:10.1371/journal.pone.0219057

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Linek P, Saulicz E, Wolny T, Myśliwiec A. Body mass normalization for ultrasound measurements of adolescent lateral abdominal muscle thickness. J Ultrasound Med. 2017;36(4):775782. doi:10.7863/ultra.16.03086

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Kawakami Y, Abe T, Fukunaga T. Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J Appl Physiol. 1993;74(6):27402744. doi:10.1152/jappl.1993.74.6.2740

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Gellhorn AC, Morgenroth DC, Goldstein B. A novel sonographic method of measuring patellar tendon length. Ultrasound Med Biol. 2012;38(5):719726. doi:10.1016/j.ultrasmedbio.2012.01.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Visser JJ, Hoogkamer JE, Bobbert MF, Huijing PA. Length and moment arm of human leg muscles as a function of knee and hip-joint angles. Eur J Appl Physiol. 1990;61(5–6):453460. doi:10.1007/BF00236067

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Ferguson CJ. An effect size primer: a guide for clinicians and researchers. Prof Psychol Res Pract. 2009;40(5):532538. doi:10.1037/a0015808

  • 55.

    Monte A, Zamparo P. Correlations between muscle-tendon parameters and acceleration ability in 20 m sprints. PLoS One. 2019;14(3):e0213347. doi:10.1371/journal.pone.0213347

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Watsford M, Ditroilo M, Fernández-Peña E, D’Amen G, Lucertini F. Muscle stiffness and rate of torque development during sprint cycling. Med Sci Sports Exerc. 2010;42(7):13241332. doi:10.1249/MSS.0b013e3181ce509d

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Kubo K, Ikebukuro T, Yata H, Tomita M, Okada M. Morphological and mechanical properties of muscle and tendon in highly trained sprinters. J Appl Biomech. 2011;27(4):336344. doi:10.1123/jab.27.4.336

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Wilson GJ, Murphy AJ, Pryor JF. Musculotendinous stiffness: its relationship to eccentric, isometric, and concentric performance. J Appl Physiol. 1994;76(6):27142719. doi:10.1152/jappl.1994.76.6.2714

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Bohm S, Mersmann F, Arampatzis A. Human tendon adaptation in response to mechanical loading: a systematic review and meta-analysis of exercise intervention studies on healthy adults. Sports Med Open. 2015;1:7. doi:10.1186/s40798-015-0009-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Scott SH, Winter DA. Internal forces of chronic running injury sites. Med Sci Sports Exerc. 1990;22(3):357369. PubMed ID: 2381304

  • 61.

    Ericson MO, Nisell R. Patellofemoral joint forces during ergometric cycling. Phys Ther. 1987;67(9):13651369. doi:10.1093/ptj/67.9.1365

  • 62.

    Luo Z, Zhang X, Wang J, Yang Y, Xu Y, Fu W. Changes in ground reaction forces, joint mechanics, and stiffness during treadmill running to fatigue. Appl Sci. 2019;9(24):5493. doi:10.3390/app9245493

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Abt JP, Sell TC, Chu Y, Lovalekar M, Burdett RG, Lephart SM. Running kinematics and shock absorption do not change after brief exhaustive running. J Strength Cond Res. 2011;25(6):14791485. doi:10.1519/JSC.0b013e3181ddfcf8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Bini RR, Hume PA, Lanferdini FJ, Vaz MA. Effects of moving forward or backward on the saddle on knee joint forces during cycling. Phys Ther Sport. 2013;14(1):2327. doi:10.1016/j.ptsp.2012.02.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Elmer SJ, Barratt PR, Korff T, Martin JC. Joint-specific power production during submaximal and maximal cycling. Med Sci Sports Exerc. 2011;43(10):19401947. doi:10.1249/MSS.0b013e31821b00c5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Douglas J, Ross A, Martin JC. Maximal muscular power: lessons from sprint cycling. Sports Med Open. 2021;7(1):48. doi:10.1186/s40798-021-00341-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Martin JC, Brown NAT. Joint-specific power production and fatigue during maximal cycling. J Biomech. 2009;42(4):474479. doi:10.1016/j.jbiomech.2008.11.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Skorski S, Hecksteden A. Coping with the “small sample–small relevant effects” dilemma in elite sport research. Int J Sports Physiol Perform. 2021;16(11):15591560. doi:10.1123/ijspp.2021-0467

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 545 545 124
Full Text Views 69 69 23
PDF Downloads 73 73 23