Alterations in the Functional Knee Alignment Are Not an Effective Strategy to Modify the Mediolateral Distribution of Knee Forces During Closed Kinetic Chain Exercises

in Journal of Applied Biomechanics

Click name to view affiliation

Will BoschDepartment of Applied Physics, University of Eastern Finland, Kuopio, Finland

Search for other papers by Will Bosch in
Current site
Google Scholar
PubMed
Close
*
,
Amir EsrafilianDepartment of Applied Physics, University of Eastern Finland, Kuopio, Finland

Search for other papers by Amir Esrafilian in
Current site
Google Scholar
PubMed
Close
,
Paavo VartiainenDepartment of Applied Physics, University of Eastern Finland, Kuopio, Finland

Search for other papers by Paavo Vartiainen in
Current site
Google Scholar
PubMed
Close
,
Jari ArokoskiDepartment of Physical and Rehabilitation Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland

Search for other papers by Jari Arokoski in
Current site
Google Scholar
PubMed
Close
,
Rami K. KorhonenDepartment of Applied Physics, University of Eastern Finland, Kuopio, Finland

Search for other papers by Rami K. Korhonen in
Current site
Google Scholar
PubMed
Close
, and
Lauri StenrothDepartment of Applied Physics, University of Eastern Finland, Kuopio, Finland

Search for other papers by Lauri Stenroth in
Current site
Google Scholar
PubMed
Close
Restricted access

Pain felt while performing rehabilitation exercises could be a reason for the low adherence of knee osteoarthritis patients to physical rehabilitation. Reducing compressive forces on the most affected knee regions may help to mitigate the pain. Knee frontal plane positioning with respect to pelvis and foot (functional knee alignment) has been shown to modify the mediolateral distribution of the tibiofemoral joint contact force in walking. Hence, different functional knee alignments could be potentially used to modify joint loading during rehabilitation exercises. The aim was to understand whether utilizing different alignments is an effective strategy to unload specific knee areas while performing rehabilitation exercises. Eight healthy volunteers performed 5 exercises with neutral, medial, and lateral knee alignment. A musculoskeletal model was modified for improved prediction of tibiofemoral contact forces and used to evaluate knee joint kinematics, moments, and contact forces. Functional knee alignment had only a small and inconsistent effect on the mediolateral distribution joint contact force. Moreover, the magnitude of tibiofemoral and patellofemoral contact forces, knee moments, and measured muscle activities was not significantly affected by the alignment. Our results suggest that altering the functional knee alignment is not an effective strategy to unload specific knee regions in physical rehabilitation.

Supplementary Materials

    • Supplementary Material (PDF 7 MB)
  • Collapse
  • Expand
  • 1.

    Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis. 2014;73(7):13231330. PubMed ID: 24553908 doi:10.1136/annrheumdis-2013-204763

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Bennell KL, Hinman RS. A review of the clinical evidence for exercise in osteoarthritis of the hip and knee. J Sci Med Sport. 2011;14(1):49. PubMed ID: 20851051 doi:10.1016/j.jsams.2010.08.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Susko AM, Kelley Fitzgerald G. The pain-relieving qualities of exercise in knee osteoarthritis. Open Access Rheumatol Res Rev. 2013;5:81. doi:10.2147/oarrr.s53974

    • Search Google Scholar
    • Export Citation
  • 4.

    Thomas KS, Muir KR, Doherty M, Jones AC, O’Reilly SC, Bassey EJ. Home based exercise programme for knee pain and knee osteoarthritis: randomised controlled trial. Br Med J. 2002;325(7367):752. doi:10.1136/bmj.325.7367.752

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Bennell KL, Hall M, Hinman RS. Osteoarthritis year in review 2015: rehabilitation and outcomes. Osteoarthr Cartil. 2016;24(1):5870. doi:10.1016/j.joca.2015.07.028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Lucha-López MO, Tricás-Moreno JM, Gaspar-Calvo E, et al. Relationship between knee alignment in asymptomatic subjects and flexibility of the main muscles that are functionally related to the knee. J Int Med Res. 2018;46(8):30653077. PubMed ID: 29936873 doi:10.1177/0300060518771825

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Kato S, Urabe Y, Kawamura K. Alignment control exercise changes lower extremity movement during stop movements in female basketball players. Knee. 2008;15(4):299304. PubMed ID: 18524598 doi:10.1016/j.knee.2008.04.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Lim BW, Hinman RS, Wrigley TV, Sharma L, Bennell KL. Does knee malalignment mediate the effects of quadriceps strengthening on knee adduction moment, pain, and function in medial knee osteoarthritis? A randomized controlled trial. Arthritis Care Res. 2008;59(7):943951. doi:10.1002/art.23823

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Fregly BJ, D’Lima DD, Colwell CW. Effective gait patterns for offloading the medial compartment of the knee. J Orthop Res. 2009;27(8):10161021. PubMed ID: 19148939 doi:10.1002/jor.20843

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Myer GD, Ford KR, Di Stasi SL, Barber Foss KD, Micheli LJ, Hewett TE. High knee abduction moments are common risk factors for patellofemoral pain (PFP) and anterior cruciate ligament (ACL) injury in girls: is PFP itself a predictor for subsequent ACL injury? Br J Sports Med. 2015;49(2):118122. PubMed ID: 24687011 doi:10.1136/bjsports-2013-092536

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Sigward SM, Powers CM. Loading characteristics of females exhibiting excessive valgus moments during cutting. Clin Biomech. 2007;22(7):827833. doi:10.1016/j.clinbiomech.2007.04.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Seth A, Hicks JL, Uchida TK, et al. OpenSim: simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput Biol. 2018;14(7):e1006223. PubMed ID: 30048444 doi:10.1371/journal.pcbi.1006223

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Delp SL, Anderson FC, Arnold AS, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):19401950. PubMed ID: 18018689 doi:10.1109/TBME.2007.901024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Imani Nejad Z, Khalili K, Hosseini Nasab SH, et al. The capacity of generic musculoskeletal simulations to predict knee joint loading using the CAMS-knee datasets. Ann Biomed Eng. 2020;48(4):14301440. PubMed ID: 32002734 doi:10.1007/s10439-020-02465-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Schellenberg F, Taylor WR, Trepczynski A, et al. Evaluation of the accuracy of musculoskeletal simulation during squats by means of instrumented knee prostheses. Med Eng Phys. 2018;61:9599. PubMed ID: 30282587 doi:10.1016/j.medengphy.2018.09.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Killen BA, Brito da Luz S, Lloyd DG, et al. Automated creation and tuning of personalised muscle paths for OpenSim musculoskeletal models of the knee joint. Biomech Model Mechanobiol. 2020;20(2):521533. PubMed ID: 33098487 doi:10.1007/s10237-020-01398-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Lai AKM, Arnold AS, Wakeling JM. Why are antagonist muscles co-activated in my simulation? A musculoskeletal model for analysing human locomotor tasks. Ann Biomed Eng. 2017;45(12):27622774. PubMed ID: 28900782 doi:10.1007/s10439-017-1920-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Rajagopal A, Dembia CL, DeMers MS, Delp DD, Hicks JL, Delp SL. Full-body musculoskeletal model for muscle-driven simulation of human gait. IEEE Trans Biomed Eng. 2016;63(10):20682079. doi:10.1109/TBME.2016.2586891

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Catelli DS, Wesseling M, Jonkers I, Lamontagne M. A musculoskeletal model customized for squatting task. Comput Methods Biomech Biomed Engin. 2019;22(1):2124. PubMed ID: 30398067 doi:10.1080/10255842.2018.1523396

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Taylor WR, Schütz P, Bergmann G, et al. A comprehensive assessment of the musculoskeletal system: the CAMS-Knee data set. J Biomech. 2017;65:3239. doi:10.1016/j.jbiomech.2017.09.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Hermens HJ, Freriks B, Merletti R, et al. European recommendations for surface electromyography results of the SENIAM project. Roessingh Res Dev. 1999;8(2):1354.

    • Search Google Scholar
    • Export Citation
  • 22.

    Bennell KL, Kyriakides M, Metcalf B, et al. Neuromuscular versus quadriceps strengthening exercise in patients with medial knee osteoarthritis and varus malalignment: a randomized controlled trial. Arthritis Rheumatol. 2014;66(4):950959. PubMed ID: 24757146 doi:10.1002/art.38317

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Lerner ZF, DeMers MS, Delp SL, Browning RC. How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces. J Biomech. 2015;48(4):644650. PubMed ID: 25595425 doi:10.1016/j.jbiomech.2014.12.049

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Bakenecker P, Raiteri B, Hahn D. Patella tendon moment arm function considerations for human vastus lateralis force estimates. J Biomech. 2019;86:225231. PubMed ID: 30736963 doi:10.1016/j.jbiomech.2019.01.042

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Kumar D, Rudolph KS, Manal KT. EMG-driven modeling approach to muscle force and joint load estimations: case study in knee osteoarthritis. J Orthop Res. 2012;30(3):377383. PubMed ID: 21901754 doi:10.1002/jor.21544

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Winby CR, Lloyd DG, Besier TF, Kirk TB. Muscle and external load contribution to knee joint contact loads during normal gait. J Biomech. 2009;42(14):22942300. PubMed ID: 19647257 doi:10.1016/j.jbiomech.2009.06.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Sharma A, Leszko F, Komistek RD, Scuderi GR, Cates HE, Liu F. In vivo patellofemoral forces in high flexion total knee arthroplasty. J Biomech. 2008;41(3):642648. PubMed ID: 17983624 doi:10.1016/j.jbiomech.2007.09.027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Van Der Krogt MM, Bar-On L, Kindt T, Desloovere K, Harlaar J. Neuro-musculoskeletal simulation of instrumented contracture and spasticity assessment in children with cerebral palsy. J Neuroeng Rehabil. 2016;13(1):111. doi:10.1186/s12984-016-0170-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Kristianslund E, Krosshaug T, Van den Bogert AJ. Effect of low pass filtering on joint moments from inverse dynamics: implications for injury prevention. J Biomech. 2012;45(4):666671. PubMed ID: 22227316 doi:10.1016/j.jbiomech.2011.12.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Michaud B, Begon M. Two efficient static optimization algorithms that account for muscle-tendon equilibrium: approaching the constraint Jacobian via a constant or a cubic spline function. Comput Methods Biomech Biomed Engin. 2020;23(11):703709. doi:10.1080/10255842.2020.1759042

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Almeida GPL, De Moura Campos Carvalho e Silva AP, França FJR, Magalhães MO, Burke TN, Marques AP. Relationship between frontal plane projection angle of the knee and hip and trunk strength in women with and without patellofemoral pain. J Back Musculoskelet Rehabil. 2016;29(2):259266. PubMed ID: 26406201 doi:10.3233/BMR-150622

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013;4(NOV):863. doi:10.3389/fpsyg.2013.00863/abstract

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Pataky TC. One-dimensional statistical parametric mapping in Python. Comput Methods Biomech Biomed Engin. 2012;15(3):295301. PubMed ID: 21756121 doi:10.1080/10255842.2010.527837

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Ogaya S, Naito H, Iwata A, Higuchi Y, Fuchioka S, Tanaka M. Knee adduction moment and medial knee contact force during gait in older people. Gait Posture. 2014;40(3):341345. PubMed ID: 24880199 doi:10.1016/j.gaitpost.2014.04.205

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Walter JP, D’Lima DD, Colwell CW, Fregly BJ. Decreased knee adduction moment does not guarantee decreased medial contact force during gait. J Orthop Res. 2010;28(10):13481354. PubMed ID: 20839320 doi:10.1002/jor.21142

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    de David AC, Carpes FP, Stefanyshyn D. Effects of changing speed on knee and ankle joint load during walking and running. J Sports Sci. 2015;33(4):391397. PubMed ID: 25105739 doi:10.1080/02640414.2014.946074

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Benoit DL, Ramsey DK, Lamontagne M, Xu L, Wretenberg P, Renström P. Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture. 2006;24(2):152164. PubMed ID: 16260140 doi:10.1016/j.gaitpost.2005.04.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Camomilla V, Dumas R, Cappozzo A. Human movement analysis: the soft tissue artefact issue. J Biomech. 2017;62:14. PubMed ID: 28923393 doi:10.1016/j.jbiomech.2017.09.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Marouane H, Shirazi-Adl A, Adouni M. 3D active-passive response of human knee joint in gait is markedly altered when simulated as a planar 2D joint. Biomech Model Mechanobiol. 2017;16(2):693703. PubMed ID: 27913901 doi:10.1007/s10237-016-0846-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Gilbert S, Chen T, Hutchinson ID, et al. Dynamic contact mechanics on the tibial plateau of the human knee during activities of daily living. J Biomech. 2014;47(9):20062012. PubMed ID: 24296275 doi:10.1016/j.jbiomech.2013.11.003

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 614 614 160
Full Text Views 299 299 23
PDF Downloads 226 226 26