Sex Differences in Spatiotemporal Gait Parameters of Transtibial Amputees

in Journal of Applied Biomechanics

Click name to view affiliation

Tess M.R. CarswellOrthopaedic Technologies and Biomechanics Laboratory, Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada

Search for other papers by Tess M.R. Carswell in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4553-5813*
,
Brenton G. HordacreDepartment of Rehabilitation, Aged and Extended Care, Flinders University, Adelaide, SA, Australia
Innovation, Implementation and Clinical Translation in Health, University of South Australia, Adelaide, SA, Australia

Search for other papers by Brenton G. Hordacre in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7129-6684
,
Marc D. KlimstraMotion and Mobility Research Laboratory, School of Exercise Science, Physical & Health Education, University of Victoria, Victoria, BC, Canada

Search for other papers by Marc D. Klimstra in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5512-0558
, and
Joshua W. GilesOrthopaedic Technologies and Biomechanics Laboratory, Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada

Search for other papers by Joshua W. Giles in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6997-8873
Restricted access

Research addressing lower limb amputee gait and prosthetic design often focuses on men, despite female lower limb amputees having different risk factors and lower success with their prosthetics overall. It is widely agreed that sex differences exist in able-bodied gait, but research analyzing sex differences in amputee gait is rare. This study compared male and female transtibial amputee gait to ascertain potential sex differences. Forty-five transtibial amputees were asked to walk at their self-selected speed, and spatiotemporal gait data were obtained. Both the mean and variability metric of parameters were analyzed for 10 male and 10 female participants. For all participants, amputated limbs had a shorter stance time, longer swing time, and larger step length. Females had a 10% shorter stance time and 26% larger normalized step and stride length than males. Female participants also walked over 20% faster than male participants. Finally, significant interactions were found in the mean and variability metric of stride velocity, indicating greater variability in women. These findings suggest that sex differences exist in transtibial amputee gait, offering possible explanations for the different comorbidities experienced by female lower limb amputees. These results have major implications for female amputees and for sex-specific research, rehabilitation, and prosthetic design.

  • Collapse
  • Expand
  • 1.

    Morgenroth DC, Roland M, Pruziner AL, Czerniecki JM. Transfemoral amputee intact limb loading and compensatory gait mechanics during down slope ambulation and the effect of prosthetic knee mechanisms. Clin Biomech. 2018;55:6572. doi:10.1016/j.clinbiomech.2018.04.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Morgenroth DC, Segal AD, Zelik KE, et al. The effect of prosthetic foot push-off on mechanical loading associated with knee osteoarthritis in lower extremity amputees. Gait Posture. 2011;34(4):502507. PubMed ID: 21803584 doi:10.1016/j.gaitpost.2011.07.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Lloyd CH, Stanhope SJ, Davis IS, Royer TD. Strength asymmetry and osteoarthritis risk factors in unilateral trans-tibial, amputee gait. Gait Posture. 2010;32(3):296300. PubMed ID: 20678938 doi:10.1016/j.gaitpost.2010.05.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Heitzmann DWW, Salami F, De Asha AR, et al. Benefits of an increased prosthetic ankle range of motion for individuals with a trans-tibial amputation walking with a new prosthetic foot. Gait Posture. 2018;64:174180. PubMed ID: 29913354 doi:10.1016/j.gaitpost.2018.06.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Randolph BJ, Nelson LM, Highsmith MJ. A review of unique considerations for female veterans with amputation. Mil Med. 2016;181(suppl 4):6668. doi:10.7205/milmed-d-16-00262

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Imam B, Miller WC, Finlayson HC, Eng JJ, Jarus T. Incidence of lower limb amputation in Canada. Can J Public Heal. 2017;108(4):374380. doi:10.17269/CJPH.108.6093

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Hordacre BG, Stevermuer T, Simmonds F, Crotty M, Eagar K. Lower-limb amputee rehabilitation in Australia: analysis of a national data set 2004–10. Aust Heal Rev. 2013;37(1):41. doi:10.1071/AH11138

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Phinyomark A, Osis ST, Hettinga BA, Kobsar D, Ferber R. Gender differences in gait kinematics for patients with knee osteoarthritis. BMC Musculoskelet Disord. 2016;17(1):157. doi:10.1186/s12891-016-1013-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Chihuri S, Wong CK. Factors associated with the likelihood of fall-related injury among people with lower limb loss. Inj Epidemiol. 2018;5(1):42. PubMed ID: 30417269 doi:10.1186/s40621-018-0171-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Wong CK, Chihuri ST, Li G. Risk of fall-related injury in people with lower limb amputations: a prospective cohort study. J Rehabil Med. 2016;48(1):8085. PubMed ID: 26694526 doi:10.2340/16501977-2042

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Vareka VR, Janura M, Jindra M, Vanaskova E. Functional independence in the lower limb amputees — The effect of gender and amputation level. Ann Phys Rehabil Med. 2018;61:e378e379. doi:10.1016/j.rehab.2018.05.880

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Davie-Smith F, Paul L, Nicholls N, Stuart WP, Kennon B. The impact of gender, level of amputation and diabetes on prosthetic fit rates following major lower extremity amputation. Prosthet Orthot Int. 2017;41(1):1925. PubMed ID: 26850990 doi:10.1177/0309364616628341

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Bruening DA, Frimenko RE, Goodyear CD, Bowden DR, Fullenkamp AM. Sex differences in whole body gait kinematics at preferred speeds. Gait Posture. 2015;41(2):540545. PubMed ID: 25548119 doi:10.1016/j.gaitpost.2014.12.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Gabrielli AS, Maxim A, Gale T, LeVasseur C, Hogan M, Anderst W. Bilateral symmetry and sex differences in ankle kinematics during the stance phase of gait. Foot Ankle Orthop. 2019;4(4):2473011419S00179. doi:10.1177/2473011419S00179

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Stansfield B, Hawkins K, Adams S, Bhatt H. A mixed linear modelling characterisation of gender and speed related changes in spatiotemporal and kinematic characteristics of gait across a wide speed range in healthy adults. Med Eng Phys. 2018;60:94102. PubMed ID: 30131278 doi:10.1016/j.medengphy.2018.07.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Fukano M, Fukubayashi T, Banks SA. Sex differences in three-dimensional talocrural and subtalar joint kinematics during stance phase in healthy young adults. Hum Mov Sci. 2018;61:117125. PubMed ID: 30086450 doi:10.1016/j.humov.2018.06.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Tannenbaum C, Ellis RP, Eyssel F, Zou J, Schiebinger L. Sex and gender analysis improves science and engineering. Nature. 2019;575(7781):137146. PubMed ID: 31695204 doi:10.1038/s41586-019-1657-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Hordacre BG, Barr C, Patritti BL, Crotty M. Assessing gait variability in transtibial amputee fallers based on spatial-temporal gait parameters normalized for walking speed. Arch Phys Med Rehabil. 2015;96(6):11621165. PubMed ID: 25481832 doi:10.1016/j.apmr.2014.11.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Müller B, Wolf SI. Handbook of Human Motion. 2018;12543. doi:10.1007/978-3-319-14418-4

  • 20.

    Winter DA. Biomechanics and Motor Control of Human Movement: Fourth Edition. 2009:1370. doi:10.1002/9780470549148

  • 21.

    Contini R. Body segment parameters, part II. Artif Limbs. 1972;16(1):119. http://www.oandplibrary.org/al/pdf/1972_01_001.pdf

  • 22.

    Nolan L, Wit A, Dudziñski K, Lees A, Lake M, Wychowañski M. Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait Posture. 2003;17(2):142151. PubMed ID: 12633775 doi:10.1016/S0966-6362(02)00066-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Houdijk H, hak L, Beek PJ, Van Dieën JH. Step length asymmetry in transtibial amputees: a strategy to regulate gait stability? Gait Posture. 2014;39(suppl 1):S84. doi:10.1016/j.gaitpost.2014.04.116

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Adamczyk PG, Kuo AD. Mechanisms of gait asymmetry due to push-off deficiency in unilateral amputees. IEEE Trans Neural Syst Rehabil Eng. 2015;23(5):776785. PubMed ID: 25222950 doi:10.1109/TNSRE.2014.2356722

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    de Asha AR, Buckley JG. The effects of walking speed on minimum toe clearance and on the temporal relationship between minimum clearance and peak swing-foot velocity in unilateral trans-tibial amputees. Prosthet Orthot Int. 2015;39(2):120125. PubMed ID: 24469428 doi:10.1177/0309364613515493

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Keklicek H, Kirdi E, Yalcin A, et al. Comparison of gait variability and symmetry in trained individuals with transtibial and transfemoral limb loss. J Orthop Surg. 2019;27(1):2309499019832665. doi:10.1177/2309499019832665

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Hausdorff JM, Rios DA, Edelberg HK. Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch Phys Med Rehabil. 2001;82(8):10501056. PubMed ID: 11494184 doi:10.1053/apmr.2001.24893

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Hausdorff JM. Gait variability: methods, modeling and meaning. J Neuroeng Rehabil. 2005;2(1):19. doi:10.1186/1743-0003-2-19

  • 29.

    Batten HR, McPhail SM, Mandrusiak AM, Varghese PN, Kuys SS. Gait speed as an indicator of prosthetic walking potential following lower limb amputation. Prosthet Orthot Int. 2019;43(2):196203. PubMed ID: 30112982 doi:10.1177/0309364618792723

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Ralston HJ. Energy-speed relation and optimal speed during level walking. Int Zeitschrift für Angew Physiol Einschl Arbeitsphysiologie. 1958;17(4):277283. doi:10.1007/BF00698754

    • Search Google Scholar
    • Export Citation
  • 31.

    Rosenblatt NJ, Bauer A, Rotter D, Grabiner MD. Active dorsiflexing prostheses may reduce trip-related fall risk in people with transtibial amputation. J Rehabil Res Dev. 2014;51(8):12291242. PubMed ID: 25625226 doi:10.1682/JRRD.2014.01.0031

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Johnson L, De Asha AR, Munjal R, Kulkarni J, Buckley JG. Toe clearance when walking in people with unilateral transtibial amputation: effects of passive hydraulic ankle. J Rehabil Res Dev. 2014;51(3):429438. PubMed ID: 25019665 doi:10.1682/JRRD.2013.05.0126

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Fey NP, Klute GK, Neptune RR. Optimization of prosthetic foot stiffness to reduce metabolic cost and intact knee loading during below-knee amputee walking: a theoretical study. J Biomech Eng. 2012;134(11):111005. doi:10.1115/1.4007824

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 750 750 62
Full Text Views 353 353 2
PDF Downloads 296 296 4