The Effects of Increasing Trunk Flexion During Stair Ascent on the Rate and Magnitude of Achilles Tendon Force in Asymptomatic Females

in Journal of Applied Biomechanics

Click name to view affiliation

Lee T. AtkinsDepartment of Physical Therapy, The University of North Texas Health Science Center, Fort Worth, TX, USA

Search for other papers by Lee T. Atkins in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6596-8408*
,
Michael LowreySports Medicine and Orthopedic Center and Ivy Rehab, Chesapeake, VA, USA

Search for other papers by Michael Lowrey in
Current site
Google Scholar
PubMed
Close
,
Sarah ReagorMethodist Rehabilitation Hospital, Dallas, TX, USA

Search for other papers by Sarah Reagor in
Current site
Google Scholar
PubMed
Close
,
Kirsten WalkerClearSky Rehabilitation Hospital of Flower Mound, Flower Mound, TX, USA

Search for other papers by Kirsten Walker in
Current site
Google Scholar
PubMed
Close
, and
Dhalston CageChildren’s Health Andrews Institute, Plano, TX, USA

Search for other papers by Dhalston Cage in
Current site
Google Scholar
PubMed
Close
Restricted access

Research indicates that increasing trunk flexion may optimize patellofemoral joint loading. However, this postural change could cause an excessive Achilles tendon force (ATF) and injury risk during movement. This study aimed to examine the effects of increasing trunk flexion during stair ascent on ATF, ankle biomechanics, and vertical ground reaction force in females. Twenty asymptomatic females (age: 23.4 [2.5] y; height: 1.6 [0.8] m; mass: 63.0 [12.2] kg) ascended stairs using their self-selected and flexed trunk postures. Compared with the self-selected trunk condition, decreases were observed for peak ATF (mean differences [MD] = 0.14 N/kg; 95% confidence interval [CI], 0.06 to 0.23; Cohen d = −1.2; P = .003), average rate of ATF development (MD = 0.25 N/kg/s; 95% CI, 0.07 to 0.43; Cohen d = −0.9; P = .010), ankle plantar flexion moment (MD = 0.08 N·m/kg; 95% CI, 0.03 to 0.13; Cohen d = −1.1; P = .005), and vertical ground reaction force (MD = 38.6 N/kg; 95% CI, 20.3 to 56.90; Cohen d = −1.8; P < .001). Increasing trunk flexion did not increase ATF. Instead, this postural change was associated with a decreased ATF rate and magnitude and may benefit individuals with painful Achilles tendinopathy.

  • Collapse
  • Expand
  • 1.

    Boling M, Padua D, Marshall S, Guskiewicz K, Pyne S, Beutler A. Gender differences in the incidence and prevalence of patellofemoral pain syndrome: epidemiology of patellofemoral pain. Scand J Med Sci Sports. 2010;20(5):725730. PubMed ID: 19765240 doi:10.1111/j.1600-0838.2009.00996.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Devereaux MD, Lachmann SM. Athletes attending a sports injury clinic—a review. Br J Sports Med. 1983;17(4):137142. PubMed ID: 6661608 doi:10.1136/bjsm.17.4.137

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Powers CM, Witvrouw E, Davis IS, Crossley KM. Evidence-based framework for a pathomechanical model of patellofemoral pain: 2017 patellofemoral pain consensus statement from the 4th international patellofemoral pain research retreat, Manchester, UK: part 3. Br J Sports Med. 2017;51(24):17131723. PubMed ID: 29109118 doi:10.1136/bjsports-2017-098717

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Atkins LT, Smithson C, Grimes D, Heuer N. The influence of sagittal trunk posture on the magnitude and rate of patellofemoral joint stress during stair ascent in asymptomatic females. Gait Posture. 2019;74:121127. PubMed ID: 31499406 doi:10.1016/j.gaitpost.2019.08.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Teng HL, Dilauro A, Weeks C, et al. Short-term effects of a trunk modification program on patellofemoral joint stress in asymptomatic runners. Phys Ther Sport. 2020;44:107113. PubMed ID: 32504959 doi:10.1016/j.ptsp.2020.05.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Teng HL, Powers CM. Sagittal plane trunk posture influences patellofemoral joint stress during running. J Orthop Sports Phys Ther. 2014;44(10):785792. PubMed ID: 25155651 doi:10.2519/jospt.2014.5249

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Atkins LT, James CR, Yang HS, et al. Immediate improvements in patellofemoral pain are associated with sagittal plane movement training to improve use of gluteus maximus muscle during single limb landing. Phys Ther. 2021;101(10):pzab165. doi:10.1093/ptj/pzab165

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    dos Santos AF, Nakagawa TH, Lessi GC, et al. Effects of three gait retraining techniques in runners with patellofemoral pain. Phys Ther Sport. 2019;36:92100. doi:10.1016/j.ptsp.2019.01.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Maffulli N, Longo UG, Kadakia A, Spiezia F. Achilles tendinopathy. Foot Ankle Surg. 2020;26(3):240249. PubMed ID: 31031150 doi:10.1016/j.fas.2019.03.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Ogbonmwan I, Kumar BD, Paton B. New lower-limb gait biomechanical characteristics in individuals with Achilles tendinopathy: a systematic review update. Gait Posture. 2018;62:146156. PubMed ID: 29550694 doi:10.1016/j.gaitpost.2018.03.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Ackermann PW, Renström P. Tendinopathy in sport. Sports Health. 2012;4(3):193201. PubMed ID: 23016086 doi:10.1177/1941738112440957

  • 12.

    Cook JL, Purdam CR. Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. Br J Sports Med. 2009;43(6):409416. PubMed ID: 18812414 doi:10.1136/bjsm.2008.051193

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Matthews W, Ellis R, Furness J, Hing WA. The clinical diagnosis of Achilles tendinopathy: a scoping review. PeerJ. 2021;9:e12166. PubMed ID: 34692248 doi:10.7717/peerj.12166

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Mueller MJ, Maluf KS. Tissue adaptation to physical stress: a proposed “physical stress theory” to guide physical therapist practice, education, and research. Phys Ther. 2002;82(4):383403. PubMed ID: 11922854 doi:10.1093/ptj/82.4.383

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Farrokhi S, Pollard CD, Souza RB, Chen YJ, Reischl S, Powers CM. Trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise. J Orthop Sports Phys Ther. 2008;38(7):403409. PubMed ID: 18591759 doi:10.2519/jospt.2008.2634

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Kluger D, Major MJ, Fatone S, Gard SA. The effect of trunk flexion on lower-limb kinetics of able-bodied gait. Hum Mov Sci. 2014;33:395403. PubMed ID: 24423389 doi:10.1016/j.humov.2013.12.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Scattone Silva R, Purdam CR, Fearon AM, et al. Effects of altering trunk position during landings on patellar tendon force and pain. Med Sci Sports Exerc. 2017;49(12):25172527. PubMed ID: 28704344 doi:10.1249/MSS.0000000000001369

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    DiLiberto FE, Nawoczenski DA, Tome J, DiGiovanni BF. Patient reported outcomes and ankle plantarflexor muscle performance following gastrocnemius recession for Achilles tendinopathy: a prospective case-control study. Foot Ankle Surg. 2020;26(7):771776. PubMed ID: 31727534 doi:10.1016/j.fas.2019.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Atkins LT, Reid J, Zink D. The effects of increased forward trunk lean during stair ascent on hip adduction and internal rotation in asymptomatic females. Gait Posture. 2022;97:147151. PubMed ID: 35961131 doi:10.1016/j.gaitpost.2022.08.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Salsich GB, Brechter JH, Powers CM. Lower extremity kinetics during stair ambulation in patients with and without patellofemoral pain. Clin Biomech. 2001;16(10):906912. PubMed ID: 11733129 doi:10.1016/S0268-0033(01)00085-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Willy RW, DeVita P, Meardon SA, Baggaley M, Womble CC, Willson JD. Effects of load carriage and step length manipulation on Achilles tendon and knee loads. Mil Med. 2019;184(9–10):e482e489. doi:10.1093/milmed/usz031

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Maganaris CN. Imaging-based estimates of moment arm length in intact human muscle-tendons. Eur J Appl Physiol. 2004;91(2–3):130139. PubMed ID: 14685871 doi:10.1007/s00421-003-1033-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Portney LG, Watkins MP. Foundations of Clinical Research: Applications to Practice. 3rd ed. Prentice Hall; 2009.

  • 24.

    Davenport TE, Kulig K, Matharu Y, Blanco CE. The edurep model for nonsurgical management of tendinopathy. Phys Ther. 2005;85(10):10931103. PubMed ID: 16180958 doi:10.1093/ptj/85.10.1093

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Chimenti RL, Flemister AS, Tome J, McMahon JM, Houck JR. Patients with insertional Achilles tendinopathy exhibit differences in ankle biomechanics as opposed to strength and range of motion. J Orthop Sports Phys Ther. 2016;46(12):10511060. PubMed ID: 27796197 doi:10.2519/jospt.2016.6462

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 534 534 51
Full Text Views 374 374 4
PDF Downloads 282 282 3