A Statistical Parametric Mapping Analysis Approach for the Evaluation of a Passive Back Support Exoskeleton on Mechanical Loading During a Simulated Patient Transfer Task

in Journal of Applied Biomechanics

Click name to view affiliation

Unai Latorre ErezumaDepartment of Physiology, University of the Basque Country (UPV/EHU), Bizkaia, Spain
Biocruces Bizkaia Health Research Institute, Bizkaia, Spain

Search for other papers by Unai Latorre Erezuma in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7385-9340*
,
Maialen Zelaia AmilibiaVicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
Biodonostia Health Research Institute, Gipuzkoa, Spain

Search for other papers by Maialen Zelaia Amilibia in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7414-2111
,
Ander Espin ElorzaDepartment of Physiology, University of the Basque Country (UPV/EHU), Bizkaia, Spain
Biocruces Bizkaia Health Research Institute, Bizkaia, Spain

Search for other papers by Ander Espin Elorza in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1969-3057
,
Camilo CortésVicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
Biodonostia Health Research Institute, Gipuzkoa, Spain

Search for other papers by Camilo Cortés in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2643-0274
,
Jon IrazustaDepartment of Physiology, University of the Basque Country (UPV/EHU), Bizkaia, Spain
Biocruces Bizkaia Health Research Institute, Bizkaia, Spain

Search for other papers by Jon Irazusta in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6763-8602
, and
Ana Rodriguez-LarradDepartment of Physiology, University of the Basque Country (UPV/EHU), Bizkaia, Spain
Biocruces Bizkaia Health Research Institute, Bizkaia, Spain

Search for other papers by Ana Rodriguez-Larrad in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0923-0788
Restricted access

This study assessed the effectiveness of a passive back support exoskeleton during a mechanical loading task. Fifteen healthy participants performed a simulated patient transfer task while wearing the Laevo (version 2.5) passive back support exoskeleton. Collected metrics encompassed L5-S1 joint moments, back and abdominal muscle activity, lower body and back kinematics, center of mass displacement, and movement smoothness. A statistical parametric mapping analysis approach was used to overcome limitations from discretization of continuous data. The exoskeleton reduced L5-S1 joint moments during trunk flexion, but wearing the device restricted L5-S1 joint flexion when flexing the trunk as well as hip and knee extension, preventing participants from standing fully upright. Moreover, wearing the device limited center of mass motion in the caudal direction and increased its motion in the anterior direction. Therefore, wearing the exoskeleton partly reduced lower back moments during the lowering phase of the patient transfer task, but there were some undesired effects such as altered joint kinematics and center of mass displacement. Statistical parametric mapping analysis was useful in determining the benefits and hindrances produced by wearing the exoskeleton while performing the simulated patient transfer task and should be utilized in further studies to inform design and appropriate usage.

  • Collapse
  • Expand
  • 1.

    Manchikanti L, Singh V, Falco FJE, Benyamin RM, Hirsch JA. Epidemiology of low back pain in adults. Neuromodulation. 2014;17:310. doi:10.1111/ner.12018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Da Costa BR, Vieira ER. Risk factors for work-related musculoskeletal disorders: a systematic review of recent longitudinal studies. Am J Ind Med. 2010;53(3):285323. doi:10.1002/ajim.20750

    • Search Google Scholar
    • Export Citation
  • 3.

    Bernard BP, Putz-Anderson V. Musculoskeletal Disorders and Workplace Factors; A Critical Review of Epidemiologic Evidence for Work-Related Musculoskeletal Disorders of the Neck, Upper Extremity, and Low Back. National Institute for Occupational Safety and Health; 1997:373468.

    • Search Google Scholar
    • Export Citation
  • 4.

    Coenen P, Kingma I, Boot CRL, Bongers PM, van Dieën JH. Cumulative mechanical low-back load at work is a determinant of low-back pain. Occup Environ Med. 2014;71(5):332337. doi:10.1136/oemed-2013-101862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Karwowski W, Caldwell M, Gaddie P. Relationships between the NIOSH (1991) lifting index, compressive and shear forces on the lumbosacral joint, and low back injury incidence rate based on industrial field study. Proceedings of the Human Factors and Ergonomics Society Annual Meeting; 1994. https://journals.sagepub.com/doi/abs/10.1177/154193129403801024?journalCode=proe. Accessed April 13, 2020.

    • Search Google Scholar
    • Export Citation
  • 6.

    Örtengren R, Andersson GBJ, Nachemson AL. Studies of relationships between lumbar disc pressure, myoelectric back muscle activity, and intra- abdominal (Intragastric) pressure. Spine. 1981;6(1):98103. doi:10.1097/00007632-198101000-00021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    McGill SM, Norman RW. Partitioning of the L4–L5 dynamic moment into disc, ligamentous, and muscular components during lifting. Spine. 1986;11(7):666678. doi:10.1097/00007632-198609000-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Marras WS, Sommerich CM. A three-dimensional motion model of loads on the lumbar spine: II. Model validation. Hum Factors. 1991;33(2):139149. doi:10.1177/001872089103300202

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Toxiri S, Näf MB, Lazzaroni M, et al. Back-support exoskeletons for occupational use: an overview of technological advances and trends. IISE Trans Occup Ergon Hum Factors. 2019;7(3–4):237249. doi:10.1080/24725838.2019.1626303

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Godwin AA, Stevenson JM, Agnew MJ, et al. Testing the efficacy of an ergonomic lifting aid at diminishing muscular fatigue in women over a prolonged period of lifting. Int J Ind Ergon. 2009;39(1):121126. doi:10.1016/j.ergon.2008.05.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Alemi MM, Geissinger J, Simon AA, Chang SE, Asbeck AT. A passive exoskeleton reduces peak and mean EMG during symmetric and asymmetric lifting. J Electromyogr Kinesiol. 2019;47:2534. doi:10.1016/j.jelekin.2019.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Poon N, van Engelhoven L, Kazerooni H, Harris C. Evaluation of a trunk supporting exoskeleton for reducing muscle fatigue. Proc Hum Factors Ergon Soc Annu Meet. 2019;63(1):980983. doi:10.1177/1071181319631491

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Koopman AS, Näf M, Baltrusch SJ, et al. Biomechanical evaluation of a new passive back support exoskeleton. J Biomech. 2020;105:109795. doi:10.1016/j.jbiomech.2020.109795

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Koopman AS, Kingma I, de Looze MP, van Dieën JH. Effects of a passive back exoskeleton on the mechanical loading of the low-back during symmetric lifting. J Biomech. 2020;102:109486. doi:10.1016/j.jbiomech.2019.109486

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Bär M, Steinhilber B, Rieger MA, Luger T. The influence of using exoskeletons during occupational tasks on acute physical stress and strain compared to no exoskeleton—a systematic review and meta-analysis. Appl Ergon. 2021;94:103385. doi:10.1016/j.apergo.2021.103385

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Kermavnar T, de Vries AW, de Looze MP, O’Sullivan LW. Effects of industrial back-support exoskeletons on body loading and user experience: an updated systematic review. Ergonomics. 2021;64(6):685711. doi:10.1080/00140139.2020.1870162

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Goršič M, Song Y, Dai B, Novak D. Evaluation of the HeroWear Apex back-assist exosuit during multiple brief tasks. J Biomech. 2021;126:110620. doi:10.1016/j.jbiomech.2021.110620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Goršič M, Song Y, Dai B, Novak VD. Short-term effects of the Auxivo LiftSuit during lifting and static leaning. Appl Ergon. 2022;102:103765. doi:10.1016/j.apergo.2022.103765

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Ziaei M, Choobineh A, Ghaem H, Abdoli-Eramaki M. Evaluation of a passive low- back support exoskeleton (Ergo-Vest) for manual waste collection. Ergonomics. 2021;64(10):12551270. doi:10.1080/00140139.2021.1915502

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Pesenti M, Antonietti A, Gandolla M, Pedrocchi A. Towards a functional performance validation standard for industrial low-back exoskeletons: state of the art review. Sensors. 2021;21(3):808. doi:10.3390/s21030808

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Davis KG, Reid CR, Rempel DD, Treaster D. Introduction to the human factors special issue on user-centered design for exoskeleton. Hum Factors. 2020;62(3):333336. doi:10.1177/0018720820914312

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Ali A, Fontanari V, Schmoelz W, Agrawal SK. Systematic review of back-support exoskeletons and soft robotic suits. Front Bioeng Biotechnol. 2021;9:765257 doi:10.3389/fbioe.2021.765257

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Bureau of Labor Statistics, U.S. Department of Labor. The economics daily, back injuries prominent in work-related musculoskeletal disorder cases in 2016. 2018. https://www.bls.gov/opub/ted/2018/back-injuries-prominent-in-work-related-musculoskeletal-disorder-cases-in-2016.htm. Accessed May 10, 2022.

    • Search Google Scholar
    • Export Citation
  • 24.

    De Bock S, Ghillebert J, Govaerts R, et al. Benchmarking occupational exoskeletons: an evidence mapping systematic review. Appl Ergon. 2022;98:103582. doi:10.1016/j.apergo.2021.103582

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Yandell MB, Quinlivan BT, Popov D, Walsh C, Zelik KE. Physical interface dynamics alter how robotic exosuits augment human movement: implications for optimizing wearable assistive devices. J Neuroeng Rehabil. 2017;14(1):40. doi:10.1186/s12984-017-0247-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Sposito M, Di Natali C, Toxiri S, Caldwell DG, De Momi E, Ortiz J. Exoskeleton kinematic design robustness: an assessment method to account for human variability. Wearable Technol. 2020;1:E7. doi:10.1017/wtc.2020.7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Budihardjo I.Studies of compressive forces on L5/S1 during dynamic manual lifting. 2002:914. https://dr.lib.iastate.edu/handle/20.500.12876/77708

    • Search Google Scholar
    • Export Citation
  • 28.

    Faber H, van Soest AJ, Kistemaker DA. Inverse dynamics of mechanical multibody systems: an improved algorithm that ensures consistency between kinematics and external forces. PLoS One. 2018;13(9):e0204575. doi:10.1371/journal.pone.0204575

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Delp SL, Anderson FC, Arnold AS, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):19401950. doi:10.1109/tbme.2007.901024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Richter C, O’Connor NE, Marshall B, Moran K. Comparison of discrete-point vs. dimensionality-reduction techniques for describing performance-related aspects of maximal vertical jumping. J Biomech. 2014;47(12):30123017. doi:10.1016/j.jbiomech.2014.07.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Pataky TC, Caravaggi P, Savage R, et al. New insights into the plantar pressure correlates of walking speed using pedobarographic statistical parametric mapping (pSPM). J Biomech. 2008;41(9):19871994. doi:10.1016/j.jbiomech.2008.03.034

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Friston KJ.Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier/AcademicPress; 2011.

  • 33.

    Pataky TC. Generalized n-dimensional biomechanical field analysis using statistical parametric mapping. J Biomech. 2010;43(10):19761982. doi:10.1016/j.jbiomech.2010.03.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Crewe H, Campbell A, Elliott B, Alderson J. Lumbo-pelvic loading during fast bowling in adolescent cricketers: the influence of bowling speed and technique. J Sports Sci. 2013;31(10):10821090. doi:10.1080/02640414.2012.762601

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Raabe ME, Chaudhari AMW. An investigation of jogging biomechanics using the full-body lumbar spine model: model development and validation. J Biomech. 2016;49(7):12381243. doi:10.1016/j.jbiomech.2016.02.046

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Christophy M, FarukSenan NA, Lotz JC, O’Reilly OM. A musculoskeletal model for the lumbar spine. Biomech Model Mechanobiol. 2011;11(1–2):1934. doi:10.1007/s10237-011-0290-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Gulde P, Hermsdörfer J. Smoothness metrics in complex movement tasks. Front Neurol. 2018;9:615. doi:10.3389/fneur.2018.00615

  • 38.

    Hogan N, Sternad D. Sensitivity of smoothness measures to movement duration, amplitude, and arrests. J Mot Behav. 2009;41(6):529534. doi:10.3200/35-09-004-rc

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    _reserves and residuals—OpenSim Documentation—Global Site. Stanford.edu. Published 2017. https://simtk-confluence.stanford.edu:8443/display/OpenSim/_reserves+and+residuals. Accessed March 8, 2021.

    • Search Google Scholar
    • Export Citation
  • 40.

    McGill SM. Electromyographic activity of the abdominal and low back musculature during the generation of isometric and dynamic axial trunk torque: implications for lumbar mechanics. J Orthop Res. 1991;9(1):91103. doi:10.1002/jor.1100090112

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Friston KJ, Holmes AP, Worsley KJ, Poline J-P, Frith CD, Frackowiak RSJ. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp. 1994;2(4):189210. doi:10.1002/hbm.460020402

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Pataky TC, Robinson MA, Vanrenterghem J. Vector field statistical analysis of kinematic and force trajectories. J Biomech. 2013;46(14):23942401. doi:10.1016/j.jbiomech.2013.07.031

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Robinson MA, Vanrenterghem J, Pataky TC. Statistical Parametric Mapping (SPM) for alpha-based statistical analyses of multi-muscle EMG time-series. J Electromyogr Kinesiol. 2015;25(1):1419. doi:10.1016/j.jelekin.2014.10.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Vieira MF, de Brito AA, Lehnen GC, Rodrigues FB. Center of pressure and center of mass behavior during gait initiation on inclined surfaces: a statistical parametric mapping analysis. J Biomech. 2017;56:1018. doi:10.1016/j.jbiomech.2017.02.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Knudson D. Confidence crisis of results in biomechanics research. Sports Biomech. 2017;16(4):425433. doi:10.1080/14763141.2016.1246603

  • 46.

    Luciano F, Ruggiero L, Pavei G. Sample size estimation in locomotion kinematics and electromyography for statistical parametric mapping. J Biomech. 2021;122:110481. doi:10.1016/j.jbiomech.2021.11048

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Hwang J, Kumar Yerriboina VN, Ari H, Kim JH. Effects of passive back-support exoskeletons on physical demands and usability during patient transfer tasks. Appl Ergon. 2021;93:103373. doi:10.1016/j.apergo.2021.103373

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Luger T, Bär M, Seibt R, Rieger MA, & Steinhilber B. (2021). Using a back exoskeleton during industrial and functional tasks—effects on muscle activity, posture, performance, usability, and wearer discomfort in a laboratory trial. Hum Factors, 0(0). doi:10.1177/00187208211007267

    • Search Google Scholar
    • Export Citation
  • 49.

    Baltrusch SJ, van Dieën JH, Bruijn SM, Koopman AS, van Bennekom CAM, Houdijk H. The effect of a passive trunk exoskeleton on metabolic costs during lifting and walking. Ergonomics. 2019;62(7):903916. doi:10.1080/00140139.2019.1602288

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Iranzo S, Piedrabuena A, García-Torres F, et al. Assessment of a passive lumbar exoskeleton in material manual handling tasks under laboratory conditions. Sensors. 2022;22(11):4060. doi:10.3390/s22114060

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Madinei S, Alemi MM, Kim S, Srinivasan D, Nussbaum MA. Biomechanical assessment of two back-support exoskeletons in symmetric and asymmetric repetitive lifting with moderate postural demands. Appl Ergon. 2020;88:103156. doi:10.1016/j.apergo.2020.103156

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Kim S, Madinei S, Alemi MM, Srinivasan D, Nussbaum MA. Assessing the potential for “undesired” effects of passive back-support exoskeleton use during a simulated manual assembly task: muscle activity, posture, balance, discomfort, and usability. Appl Ergon. 2020;89:103194. doi:10.1016/j.apergo.2020.103194

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Luger T, Bär M, Seibt R, Rimmele P, Rieger MA, Steinhilber B. A passive back exoskeleton supporting symmetric and asymmetric lifting in stoop and squat posture reduces trunk and hip extensor muscle activity and adjusts body posture—a laboratory study. Appl Ergon. 2021;97:103530. doi:10.1016/j.apergo.2021.103530

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    dos Anjos FV, Vieira TM, Cerone GL, et al. Assessment of exoskeleton related changes in kinematics and muscle activity. In: Wearable Robotic Challenges and Trends. Springer; 2020;27:517522. doi:10.1007/978-3-030-69547-7_83

    • Search Google Scholar
    • Export Citation
  • 55.

    Pataky TC, Vanrenterghem J, Robinson MA. The probability of false positives in zero-dimensional analyses of one-dimensional kinematic, force and EMG trajectories. J Biomech. 2016;49(9):14681476. doi:10.1016/j.jbiomech.2016.03.032

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Schiffman JM, Gregorczyk KN, Bensel CK, Hasselquist L, Obusek JP. The effects of a lower body exoskeleton load carriage assistive device on limits of stability and postural sway. Ergonomics. 2008;51(10):15151529. doi:10.1080/00140130802248084

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Howard J, Murashov VV, Lowe BD, Lu ML. Industrial exoskeletons: need for intervention effectiveness research. Am J Ind Med. 2020;63:201208. doi:10.1002/ajim.23080

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 495 495 33
Full Text Views 354 354 1
PDF Downloads 319 319 2