A Minimal Sensor Inertial Measurement Unit System Is Replicable and Capable of Estimating Bilateral Lower-Limb Kinematics in a Stationary Bodyweight Squat and a Countermovement Jump

in Journal of Applied Biomechanics

Click name to view affiliation

AuraLea FainBiomechanics, Physical Performance, and Exercise (BioPPEx) Research Group, Macquarie University, Sydney, NSW, Australia
Faculty of Medicine, Health, and Human Sciences, Macquarie University, Sydney, NSW, Australia

Search for other papers by AuraLea Fain in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9023-8095
,
Benjamin HindleFaculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia

Search for other papers by Benjamin Hindle in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9601-9985
,
Jordan AndersenBiomechanics, Physical Performance, and Exercise (BioPPEx) Research Group, Macquarie University, Sydney, NSW, Australia
Faculty of Medicine, Health, and Human Sciences, Macquarie University, Sydney, NSW, Australia

Search for other papers by Jordan Andersen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3424-9205
,
Bradley C. NindlNeuromuscular Research Lab/Warrior Performance Center, University of Pittsburgh, Pittsburgh, PA, USA
Department of Sports Medicine, University of Pittsburgh, Pittsburgh, PA, USA

Search for other papers by Bradley C. Nindl in
Current site
Google Scholar
PubMed
Close
,
Matthew B. BirdNeuromuscular Research Lab/Warrior Performance Center, University of Pittsburgh, Pittsburgh, PA, USA

Search for other papers by Matthew B. Bird in
Current site
Google Scholar
PubMed
Close
,
Joel T. FullerBiomechanics, Physical Performance, and Exercise (BioPPEx) Research Group, Macquarie University, Sydney, NSW, Australia
Faculty of Medicine, Health, and Human Sciences, Macquarie University, Sydney, NSW, Australia

Search for other papers by Joel T. Fuller in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0997-4878
,
Jodie A. WillsBiomechanics, Physical Performance, and Exercise (BioPPEx) Research Group, Macquarie University, Sydney, NSW, Australia
Faculty of Medicine, Health, and Human Sciences, Macquarie University, Sydney, NSW, Australia

Search for other papers by Jodie A. Wills in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5397-4288
, and
Tim L.A. DoyleBiomechanics, Physical Performance, and Exercise (BioPPEx) Research Group, Macquarie University, Sydney, NSW, Australia
Faculty of Medicine, Health, and Human Sciences, Macquarie University, Sydney, NSW, Australia

Search for other papers by Tim L.A. Doyle in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1227-6835*
Restricted access

This study aimed to validate a 7-sensor inertial measurement unit system against optical motion capture to estimate bilateral lower-limb kinematics. Hip, knee, and ankle sagittal plane peak angles and range of motion (ROM) were compared during bodyweight squats and countermovement jumps in 18 participants. In the bodyweight squats, left peak hip flexion (intraclass correlation coefficient [ICC] = .51), knee extension (ICC = .68) and ankle plantar flexion (ICC = .55), and hip (ICC = .63) and knee (ICC = .52) ROM had moderate agreement, and right knee ROM had good agreement (ICC = .77). Relatively higher agreement was observed in the countermovement jumps compared to the bodyweight squats, moderate to good agreement in right peak knee flexion (ICC = .73), and right (ICC = .75) and left (ICC = .83) knee ROM. Moderate agreement was observed for right ankle plantar flexion (ICC = .63) and ROM (ICC = .51). Moderate agreement (ICC > .50) was observed in all variables in the left limb except hip extension, knee flexion, and dorsiflexion. In general, there was poor agreement for peak flexion angles, and at least moderate agreement for joint ROM. Future work will aim to optimize methodologies to increase usability and confidence in data interpretation by minimizing variance in system-based differences and may also benefit from expanding planes of movement.

Supplementary Materials

    • Supplementary Figure S1 (PDF 351 KB)
    • Supplementary Figure S2 (PDF 342 KB)
    • Supplementary Table S1 (PDF 180 KB)
    • Supplementary Table S2 (PDF 331 KB)
  • Collapse
  • Expand
  • 1.

    Trask C, Mathiassen SE, Wahlstrom J, Heiden M, Rezagholi M. Data collection costs in industrial environments for three occupational posture exposure assessment methods. BMC Med Res Methodol. 2012;12(1):89. PubMed ID: 22738341 doi:10.1186/1471-2288-12-89

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Vaara JP, Groeller H, Drain J, et al. Physical training considerations for optimizing performance in essential military tasks. Eur J Sport Sci. 2022;22(1):4357. PubMed ID: 34006204 doi:10.1080/17461391.2021.1930193

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Nagelli CV, Webster KE, Di Stasi S, Wordeman SC, Hewett TE. The association of psychological readiness to return to sport after anterior cruciate ligament reconstruction and hip and knee landing kinematics. Clin Biomech. 2019;68:104108. PubMed ID: 31195246 doi:10.1016/j.clinbiomech.2019.05.031

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Seymore KD, Fain AC, Lobb NJ, Brown TN. Sex and limb impact biomechanics associated with risk of injury during drop landing with body borne load. PLoS One. 2019;14(2):e0211129. PubMed ID: 30726276 doi:10.1371/journal.pone.0211129

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Mavor MP, Ross GB, Clouthier AL, Karakolis T, Graham RB. Validation of an IMU suit for military-based tasks. Sensors. 2020;20(15):4280. doi:10.3390/s20154280

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Johnson CD, Outerleys J, Davis IS. Relationships between tibial acceleration and ground reaction force measures in the medial-lateral and anterior-posterior planes. J Biomech. 2021;117:110250. PubMed ID: 33486264 doi:10.1016/j.jbiomech.2021.110250

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Zago M, Tarabini M, Delfino Spiga M, et al. Machine-learning based determination of gait events from foot-mounted inertial units. Sensors. 2021;21(3):839. doi:10.3390/s21030839

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Teufl W, Lorenz M, Miezal M, Taetz B, Frohlich M, Bleser G. Towards inertial sensor based mobile gait analysis: event-detection and spatio-temporal parameters. Sensors. 2018;19(1):38. doi:10.3390/s19010038

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Mo S, Chow DHK. Accuracy of three methods in gait event detection during overground running. Gait Posture. 2018;59:9398. PubMed ID: 29028626 doi:10.1016/j.gaitpost.2017.10.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Hindle BR, Keogh JWL, Lorimer AV. Validation of spatiotemporal and kinematic measures in functional exercises using a minimal modeling inertial sensor methodology. Sensors. 2020;20(16):4586. doi:10.3390/s20164586

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Patoz A, Lussiana T, Breine B, Gindre C, Malatesta D. A single sacral-mounted inertial measurement unit to estimate peak vertical ground reaction force, contact time, and flight time in running. Sensors. 2022;22(3):784. PubMed ID: 35161530 doi:10.3390/s22030784

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Reenalda J, Maartens E, Buurke JH, Gruber AH. Kinematics and shock attenuation during a prolonged run on the athletic track as measured with inertial magnetic measurement units. Gait Posture. 2019;68:155160. PubMed ID: 30481697 doi:10.1016/j.gaitpost.2018.11.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Fusca M, Negrini F, Perego P, Magoni L, Molteni F, Andreoni G. Validation of a wearable IMU system for gait analysis: protocol and application to a new system. Appl Sci. 2018;8(7):1167. doi:10.3390/app8071167

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Antunes R, Jacob P, Meyer A, Conditt MA, Roche MW, Verstraete MA. Accuracy of measuring knee flexion after TKA through wearable IMU sensors. J Funct Morphol Kinesiol. 2021;6(3):60. doi:10.3390/jfmk6030060

    • Search Google Scholar
    • Export Citation
  • 15.

    Chia L, Andersen JT, McKay MJ, Sullivan J, Megalaa T, Pappas E. Evaluating the validity and reliability of inertial measurement units for determining knee and trunk kinematics during athletic landing and cutting movements. J Electromyogr Kinesiol. 2021;60:102589. PubMed ID: 34418582 doi:10.1016/j.jelekin.2021.102589

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Andreoli CV, Chiaramonti BC, Buriel E, Pochini AC, Ejnisman B, Cohen M. Epidemiology of sports injuries in basketball: integrative systematic review. BMJ Open Sport Exerc Med. 2018;4(1):e000468. PubMed ID: 30687514 doi:10.1136/bmjsem-2018-000468

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Eagle SR, Keenan KA, Connaboy C, Wohleber M, Simonson A, Nindl BC. Bilateral quadriceps strength asymmetry is associated with previous knee injury in military special tactics operators. J Strength Cond Res. 2019;33(1):8994. PubMed ID: 30431533 doi:10.1519/JSC.0000000000002920

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Blache Y, Pairot de Fontenay B, Argaud S, Monteil K. Asymmetry of inter-joint coordination during single leg jump after anterior cruciate ligament reconstruction. Int J Sports Med. 2017;38(2):159167. PubMed ID: 27984842 doi:10.1055/s-0042-109976

    • Search Google Scholar
    • Export Citation
  • 19.

    Teufl W, Miezal M, Taetz B, Frohlich M, Bleser G. Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements. PLoS One. 2019;14(2):e0213064. PubMed ID: 30817787 doi:10.1371/journal.pone.0213064

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    van der Kruk E, Reijne MM. Accuracy of human motion capture systems for sport applications; state-of-the-art review. Eur J Sport Sci. 2018;18(6):806819. PubMed ID: 29741985 doi:10.1080/17461391.2018.1463397

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Sullivan GM, Feinn R. Using effect size-or why the P value is not enough. J Grad Med Educ. 2012;4(3):279282. PubMed ID: 23997866 doi:10.4300/JGME-D-12-00156.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Piercy KL, Troiano RP, Ballard RM, et al. The physical activity guidelines for Americans. JAMA. 2018;320(19):20202028. PubMed ID: 30418471 doi:10.1001/jama.2018.14854

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Mosier EM, Fry AC, Lane MT. Kinetic contributions of the upper limbs during counter-movement vertical jumps with and without arm swing. J Strength Cond Res. 2019;33(8):20662073. PubMed ID: 29084090 doi:10.1519/JSC.0000000000002275

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Besier TF, Sturnieks DL, Alderson JA, Lloyd DG. Repeatability of gait data using a functional hip joint centre and a mean helical knee axis. J Biomech. 2003;36(8):11591168. PubMed ID: 12831742 doi:10.1016/S0021-9290(03)00087-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Schwartz MH, Rozumalski A. A new method for estimating joint parameters from motion data. J Biomech. 2005;38(1):107116. PubMed ID: 15519345 doi:10.1016/j.jbiomech.2004.03.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Wu G, Siegler S, Allard P, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech. 2002;35(4):543548. PubMed ID: 11934426 doi:10.1016/S0021-9290(01)00222-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Chai T, Draxler RR. Root mean square error (RMSE) or mean absolute error (MAE). Geosci Model Dev Discuss. 2014;7(1):15251534. doi:10.5194/gmd-7-1247-2014

    • Search Google Scholar
    • Export Citation
  • 28.

    Bartko JJ. The intraclass correlation coefficient as a measure of reliability. Psychol Rep. 1966;19(1):311. PubMed ID: 5942109 doi:10.2466/pr0.1966.19.1.3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155163. PubMed ID: 27330520 doi:10.1016/j.jcm.2016.02.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Moore DS, Notz W, Fligner MA. The basic practice of statistics. 6th ed. W.H. Freeman; 2013.

  • 31.

    McErlain-Naylor S, King M, Pain MT. Determinants of countermovement jump performance: a kinetic and kinematic analysis. J Sports Sci. 2014;32(19):18051812. PubMed ID: 24875041 doi:10.1080/02640414.2014.924055

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Dill KE, Begalle RL, Frank BS, Zinder SM, Padua DA. Altered knee and ankle kinematics during squatting in those with limited weight-bearing-lunge ankle-dorsiflexion range of motion. J Athl Train. 2014;49(6):723732. PubMed ID: 25144599 doi:10.4085/1062-6050-49.3.29

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Hemmerich A, Brown H, Smith S, Marthandam SS, Wyss UP. Hip, knee, and ankle kinematics of high range of motion activities of daily living. J Orthop Res. 2006;24(4):770781. PubMed ID: 16514664 doi:10.1002/jor.20114

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Edwards WT. Effect of joint stiffness on standing stability. Gait Posture. 2007;25(3):432439. PubMed ID: 16846737 doi:10.1016/j.gaitpost.2006.05.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Mitchell B, Bressel E, McNair PJ, Bressel ME. Effect of pelvic, hip, and knee position on ankle joint range of motion. Phys Ther Sport. 2008;9(4):202208. PubMed ID: 19083721 doi:10.1016/j.ptsp.2008.08.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Horenstein RE, Lewis CL, Yan S, Halverstadt A, Shefelbine SJ. Validation of magneto-inertial measuring units for measuring hip joint angles. J Biomech. 2019;91:170174. PubMed ID: 31147099 doi:10.1016/j.jbiomech.2019.05.029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Cormie P, McBride JM, McCaulley GO. Power-time, force-time, and velocity-time curve analysis of the countermovement jump: impact of training. J Strength Cond Res. 2009;23(1):177186. PubMed ID: 19077740 doi:10.1519/JSC.0b013e3181889324

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Hovey S, Wang H, Judge LW, Avedesian JM, Dickin DC. The effect of landing type on kinematics and kinetics during single-leg landings. Sports Biomech. 2021;20(5):543559. PubMed ID: 30882276 doi:10.1080/14763141.2019.1582690

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Yu P, Gong Z, Meng Y, Baker JS, István B, Gu Y. The acute influence of running-induced fatigue on the performance and biomechanics of a countermovement jump. Appl Sci. 2020;10(12):4319. doi:10.3390/app10124319

    • Search Google Scholar
    • Export Citation
  • 40.

    Diaz EM, Heirich O, Khider M, Robertson P. Optimal sampling frequency and bias error modeling for foot-mounted IMUs. Paper presented at: International Conference on Indoor Positioning and Indoor Navigation; 2013; Montbeliard Belfort, France.

    • Search Google Scholar
    • Export Citation
  • 41.

    Mitschke C, Zaumseil F, Milani TL. The influence of inertial sensor sampling frequency on the accuracy of measurement parameters in rearfoot running. Comput Methods Biomech Biomed Engin. 2017;20(14):15021511. PubMed ID: 28948846 doi:10.1080/10255842.2017.1382482

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Bailey GP, Harle RK. Investigation of sensor parameters for kinematic assessment of steady state running using foot mounted IMUs. Paper presented at: icSPORTS2014; Rome, Italy.

    • Search Google Scholar
    • Export Citation
  • 43.

    Sigward SM, Pollard CD, Havens KL, Powers CM. The influence of sex and maturation on knee mechanics during side-step cutting. Med Sci Sports Exerc. 2012;44(8):1497. PubMed ID: 22330027 doi:10.1249/MSS.0b013e31824e8813

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Garcia SA, Vakula MN, Holmes SC, Pamukoff DN. The influence of body mass index and sex on frontal and sagittal plane knee mechanics during walking in young adults. Gait Posture. 2021;83:217222. PubMed ID: 33171375 doi:10.1016/j.gaitpost.2020.10.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    McLean SG, Huang X, Su A, Van Den Bogert AJ. Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. Clin Biomech. 2004;19(8):828838. doi:10.1016/j.clinbiomech.2004.06.006

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 674 674 181
Full Text Views 89 89 38
PDF Downloads 106 106 44