Left–Right Differential Erector Spinae Muscles Activation in Prone and Quadruped Positions

in Journal of Applied Biomechanics

Click name to view affiliation

Nader FarahpourKinesiology Department, Bu Ali Sina University, Hamedan, Iran

Search for other papers by Nader Farahpour in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5883-7845*
,
Mahboube AlemzadehKinesiology Department, Bu Ali Sina University, Hamedan, Iran

Search for other papers by Mahboube Alemzadeh in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4402-981X
,
Mehri MohammadiDepartment of Exercise Physiology and Corrective Exercises, Urmia University, Urmia, Iran

Search for other papers by Mehri Mohammadi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4775-7564
,
Mohammadreza RezaieKinesiology Department, Bu Ali Sina University, Hamedan, Iran

Search for other papers by Mohammadreza Rezaie in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1996-9781
, and
Paul AllardSchool of Kinesiology, University of Montreal, Montreal, QC, Canada

Search for other papers by Paul Allard in
Current site
Google Scholar
PubMed
Close
Restricted access

Left–right differential erector spinae (ES) muscle strengthening is required to correct ES muscle imbalances. The objective was to test the effect of 6 body positions on the differential activation of the ES muscles. In 14 able-bodied young women, using a surface electromyography system, the bilateral ES muscles activity at the third lumbar (ESL3) and the 10th (EST10) and 6th (EST6) thoracic vertebral levels was measured with the contralateral arm and leg lifted in the prone and quadruped conditions and with a single arm lifted in the quadruped position. Results showed that the activity of the ESL3 was symmetrical (P > .05) and significantly smaller than that of the thoracic ES muscles in all body positions (P < .01). The EST10 and EST6 were differentially activated in all tests (P < .001). Besides, the differential activation was higher in the contralateral-arm and -leg lift in the quadruped position than in the other positions. In conclusion, contralateral-arm and -leg lift and single-arm lift in the quadruped and prone positions are capable of differentially activating the ES muscles on one side more than the other side. Further studies are recommended to examine the effectiveness of these exercises on the correction of ES muscle imbalances in clinical populations.

  • Collapse
  • Expand
  • 1.

    Oatis CA. Kinesiology: The Mechanics and Pathomechanics of Human Movement. Wolters Kluwer; 2017.

  • 2.

    Guo LY, Wang YL, Huang YH, et al. Comparison of the electromyographic activation level and unilateral selectivity of erector spinae during different selected movements. Int J Rehabil Res. 2012;35(4):345351. doi:10.1097/MRR.0b013e32835641c0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Farahpour N, Ghasemi S, Allard P, Saba MS. Electromyographic responses of erector spinae and lower limb’s muscles to dynamic postural perturbations in patients with adolescent idiopathic scoliosis. J Electromyogr Kinesiol. 2014;24(5):645651. doi:10.1016/j.jelekin.2014.05.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Farahpour N, Younesian H, Bahrpeyma F. Electromyographic activity of erector spinae and external oblique muscles during trunk lateral bending and axial rotation in patients with adolescent idiopathic scoliosis and healthy subjects. Clin Biomech. 2015;30(5):411417. doi:10.1016/j.clinbiomech.2015.03.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Kim MH, Yoo WG, Choi BR. Differences between two subgroups of low back pain patients in lumbopelvic rotation and symmetry in the erector spinae and hamstring muscles during trunk flexion when standing. J Electromyogr Kinesiol. 2013;23(2):387393. doi:10.1016/j.jelekin.2012.11.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Larivière C, Gagnon D, Loisel P. The comparison of trunk muscles EMG activation between subjects with and without chronic low back pain during flexion–extension and lateral bending tasks. J Electromyogr Kinesiol. 2000;10(2):7991. doi:10.1016/S1050-6411(99)00027-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Park Y, Ko JY, Jang JY, Lee S, Beom J, Ryu JS. Asymmetrical activation and asymmetrical weakness as two different mechanisms of adolescent idiopathic scoliosis. Sci Rep. 2021;11(1):17582. doi:10.1038/s41598-021-96882-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Renkawitz T, Boluki D, Grifka J. The association of low back pain, neuromuscular imbalance, and trunk extension strength in athletes. Spine J. 2006;6(6):673683. doi:10.1016/j.spinee.2006.03.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Yoo J, Jeong J, Lee W. The effect of trunk stabilization exercise using an unstable surface on the abdominal muscle structure and balance of stroke patients. J Phys Ther Sci. 2014;26(6):857859. doi:10.1589/jpts.26.857

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Krzysztofik M, Jarosz J, Matykiewicz P, et al. A comparison of muscle activity of the dominant and non-dominant side of the body during low versus high loaded bench press exercise performed to muscular failure. J Electromyogr Kinesiol. 2021;56:102513. doi:10.1016/j.jelekin.2020.102513

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Mrzygłód S, Pietraszewski P, Golas A, Jarosz J, Matusiński A, Krzysztofik M. Changes in muscle activity imbalance of the lower limbs following 3 weeks of supplementary body-weight unilateral training. Appl Sci. 2021;11(4):1494. doi:10.3390/app11041494

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Moffroid MT. Endurance of trunk muscles in persons with chronic low back pain: assessment, performance, training. J Rehabil Res Dev. 1997;34(4):440447.

    • Search Google Scholar
    • Export Citation
  • 13.

    Valachi B, Valachi K. Mechanisms leading to musculoskeletal disorders in dentistry. J Am Dent Assoc. 2003;134(10):13441350. doi:10.14219/jada.archive.2003.0048

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    McGill S. Low Back Disorders: Evidence-Based Prevention and Rehabilitation. Human Kinetics; 2007.

  • 15.

    McGill SM, Chaimberg JD, Frost DM, Fenwick CM. Evidence of a double peak in muscle activation to enhance strike speed and force: an example with elite mixed martial arts fighters. J Strength Cond Res. 2010;24(2):348357. doi:10.1519/JSC.0b013e3181cc23d5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    De Luca CJ. Control properties of motor units. J Exp Biol. 1985;115:125136. doi:10.1242/jeb.115.1.125

  • 17.

    Takahashi J, Suzuki H, Tanaka N, Nishiyama T. Muscle activity during bridge exercises on different types of floor surfaces. J Phys Fit Sports Med. 2021;10(4):199203. doi:10.7600/jpfsm.10.199

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Stronska K, Golas A, Wilk M, Zajac A, Maszczyk A, Stastny P. The effect of targeted resistance training on bench press performance and the alternation of prime mover muscle activation patterns. Sports Biomech. 2022;21(10):12621276. doi:10.1080/14763141.2020.1752790

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Dupre T, Tryba J, Potthast W. Muscle activity of cutting manoeuvres and soccer inside passing suggests an increased groin injury risk during these movements. Sci Rep. 2021;11(1):7223. doi:10.1038/s41598-021-86666-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Golas A, Maszczyk A, Pietraszewski P, et al. Muscular activity patterns of female and male athletes during the flat bench press. Biol Sport. 2018;35(2):175179. doi:10.5114/biolsport.2018.74193

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Kim H, Park C, Bang S, Jang H, Kim Y, Lee S. The immediate effects of single leg bridge exercise on abdominal muscle activity in Subacute stroke patients: a preliminary study. Phys Ther Rehabil Sci. 2021;10(2):167174. doi:10.14474/ptrs.2021.10.2.167

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Wilson JM, Loenneke JP, Jo E, Wilson GJ, Zourdos MC, Kim JS. The effects of endurance, strength, and power training on muscle fiber type shifting. J Strength Cond Res. 2012;26(6):17241729. doi:10.1519/JSC.0b013e318234eb6f

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Kim JS, Kang MH, Jang JH, Oh JS. Comparison of selective electromyographic activity of the superficial lumbar multifidus between prone trunk extension and four-point kneeling arm and leg lift exercises. J Phys Ther Sci. 2015;27(4):10371039. doi:10.1589/jpts.27.1037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Garcia-Vaquero MP, Moreside JM, Brontons-Gil E, Peco-Gonzalez N, Vera-Garcia FJ. Trunk muscle activation during stabilization exercises with single and double leg support. J Electromyogr Kinesiol. 2012;22(3):398406. doi:10.1016/j.jelekin.2012.02.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Yoon TL, Cynn HS, Choi SA, et al. Trunk muscle activation during different quadruped stabilization exercises in individuals with chronic low back pain. Physiother Res Int. 2015;20(2):126132. doi:10.1002/pri.1611

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Ekstrom RA, Osborn RW, Hauer PL. Surface electromyographic analysis of the low back muscles during rehabilitation exercises. J Orthop Sports Phys Ther. 2008;38(12):736745. doi:10.2519/jospt.2008.2865

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Andersen V, Fimland MS, Saeterbakken A. Trunk muscle activity in one- and two-armed American Kettlebell swing in resistance-trained men. Sports Med Int Open. 2019;3(1):E12E18. doi:10.1055/a-0869-7228

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Martin-Fuentes I, Oliva-Lozano JM, Muyor JM. Electromyographic activity in deadlift exercise and its variants. A systematic review. PLoS One. 2020;15(2):e0229507. doi:10.1371/journal.pone.0229507

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Ko JY, Suh JH, Kim H, Ryu JS. Proposal of a new exercise protocol for idiopathic scoliosis: a preliminary study. Medicine. 2018;97(49):e13336. doi:10.1097/md.0000000000013336

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Kim CR, Park DK, Lee ST, Ryu JS. Electromyographic changes in trunk muscles during graded lumbar stabilization exercises. PM R. 2016;8(10):979989. doi:10.1016/j.pmrj.2016.05.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Steele J, Bruce-Low S, Smith D. A review of the specificity of exercises designed for conditioning the lumbar extensors. Br J Sports Med. 2015;49(5):291297. doi:10.1136/bjsports-2013-092197

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Viswaja K. Effectiveness of trunk training exercises versus swiss ball exercises for sitting balance and gait parameters in acute stroke subjects. In J Physiother. 2015;2(6):925932. doi:10.15621/ijphy/2015/v2i6/80750

    • Search Google Scholar
    • Export Citation
  • 33.

    Hermens HJ, Freriks B, Merletti R, et al. European recommendations for surface electromyography. Roessingh Res Develop. 1999;8(2):1354.

    • Search Google Scholar
    • Export Citation
  • 34.

    Cheung J, Veldhuizen AG, Halbertsma JP, et al. The relation between electromyography and growth velocity of the spine in the evaluation of curve progression in idiopathic scoliosis. Spine. 2004;29(9):10111016. doi:10.1097/00007632-200405010-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Vera-Garcia FJ, Moreside JM, McGill SM. MVC techniques to normalize trunk muscle EMG in healthy women. J Electromyogr Kinesiol. 2010;20(1):1016. doi:10.1016/j.jelekin.2009.03.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    McGill SM, Karpowicz A. Exercises for spine stabilization: motion/motor patterns, stability progressions, and clinical technique. Arch Phys Med Rehabil. 2009;90(1):118126. doi:10.1016/j.apmr.2008.06.026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Bergmark A. Stability of the lumbar spine. A study in mechanical engineering. Acta Orthop Scand Suppl. 1989;230(10):154. doi:10.3109/17453678909154177

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Ebenbichler GR, Oddsson LI, Kollmitzer J, Erim Z. Sensory-motor control of the lower back: implications for rehabilitation. Med Sci Sports Exerc. 2001;33(11):18891898. doi:10.1097/00005768-200111000-00014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Hodges PW, Richardson CA. Inefficient muscular stabilization of the lumbar spine associated with low back pain. A motor control evaluation of transversus abdominis. Spine. 1996;21(22):26402650. doi:10.1097/00007632-199611150-00014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Sapsford RR, Hodges PW. Contraction of the pelvic floor muscles during abdominal maneuvers. Arch Phys Med Rehabil. 2001;82(8):10811088. doi:10.1053/apmr.2001.24297

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Radebold A, Cholewicki J, Panjabi MM, Patel TC. Muscle response pattern to sudden trunk loading in healthy individuals and in patients with chronic low back pain. Spine. 2000;25(8):947954. doi:10.1097/00007632-200004150-00009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Quirk DA, Trudel RD, Hubley-Kozey CL. Trunk muscle activation patterns differ between those with low and high back extensor strength during a controlled dynamic task. Front Sports Act Living. 2019;1:67. doi:10.3389/fspor.2019.00067

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Schreiber S, Parent EC, Moez EK, et al. The effect of Schroth exercises added to the standard of care on the quality of life and muscle endurance in adolescents with idiopathic scoliosis—an assessor and statistician blinded randomized controlled trial: “SOSORT 2015 Award Winner.” Scoliosis. 2015;10(1):24. doi:10.1186/s13013-015-0048-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Zhou Z, Liu F, Li R, Chen X. The effects of exercise therapy on adolescent idiopathic scoliosis: an overview of systematic reviews and meta-analyses. Complement Ther Med. 2021;58:102697. doi:10.1016/j.ctim.2021.102697

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Schmid AB, Dyer L, Boni T, Held U, Brunner F. Paraspinal muscle activity during symmetrical and asymmetrical weight training in idiopathic scoliosis. J Sport Rehabil. 2010;19(3):315327. doi:10.1123/jsr.19.3.315

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 677 677 174
Full Text Views 319 319 2
PDF Downloads 288 288 2