Pelvic Rotation Is Associated With Asymmetry in the Knee Extensor Moment During Double-Leg Squatting After Anterior Cruciate Ligament Reconstruction

in Journal of Applied Biomechanics

Click name to view affiliation

Tomoya IshidaFaculty of Health Sciences, Hokkaido University, Sapporo, Japan

Search for other papers by Tomoya Ishida in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0174-7416*
,
Mina SamukawaFaculty of Health Sciences, Hokkaido University, Sapporo, Japan

Search for other papers by Mina Samukawa in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4663-598X
,
Yuta KoshinoFaculty of Health Sciences, Hokkaido University, Sapporo, Japan

Search for other papers by Yuta Koshino in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1942-7798
,
Takumi InoFaculty of Health Sciences, Hokkaido University of Science, Sapporo, Japan

Search for other papers by Takumi Ino in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0980-4147
,
Satoshi KasaharaFaculty of Health Sciences, Hokkaido University, Sapporo, Japan

Search for other papers by Satoshi Kasahara in
Current site
Google Scholar
PubMed
Close
, and
Harukazu TohyamaFaculty of Health Sciences, Hokkaido University, Sapporo, Japan

Search for other papers by Harukazu Tohyama in
Current site
Google Scholar
PubMed
Close
Restricted access

Asymmetry in knee extensor moment during double-leg squatting was observed after anterior cruciate ligament reconstruction, even after the completion of the rehabilitation program for return to sports. The purpose of this study was to clarify the association between asymmetry in the knee extensor moment and pelvic rotation angle during double-leg squatting after anterior cruciate ligament reconstruction. Twenty-four participants performed double-leg squatting. Kinetics and kinematics during squatting were analyzed using a 3-dimensional motion analysis system with 2 force plates. The limb symmetry index of knee extensor moment was predicted by the pelvic rotation angle (R 2 = .376, P = .001). In addition, the pelvic rotation and the limb symmetry index of the vertical ground reaction force independently explained the limb symmetry index of the knee extensor moment (R 2 = .635, P < .001, β of pelvic rotation = −0.489, β of vertical ground reaction force = 0.524). Pelvic rotation toward the involved limb was associated with a smaller knee extensor moment in the involved limb than in the uninvolved limb. The assessment of pelvic rotation would be useful for partially predicting asymmetry in the knee extensor moment during double-leg squatting. Minimizing pelvic rotation may improve the asymmetry in the knee extensor moment during double-leg squatting after anterior cruciate ligament reconstruction.

  • Collapse
  • Expand
  • 1.

    van Melick N, van Cingel REH, Brooijmans F, et al. Evidence-based clinical practice update: practice guidelines for anterior cruciate ligament rehabilitation based on a systematic review and multidisciplinary consensus. Br J Sports Med. 2016;50(24):15061515. PubMed ID: 27539507 doi:10.1136/bjsports-2015-095898

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Chan MS, Sigward SM. Center of pressure predicts Intra-limb compensatory patterns that shift demands away from knee extensors during squatting. J Biomech. 2020;111:110008. doi:10.1016/j.jbiomech.2020.110008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Webster KE, Austin DC, Feller JA, Clark RA, McClelland JA. Symmetry of squatting and the effect of fatigue following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2015;23(11):32083213. PubMed ID: 24934927 doi:10.1007/s00167-014-3121-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Sigward SM, Chan M-SM, Lin PE, Almansouri SY, Pratt KA. Compensatory strategies that reduce knee extensor demand during a bilateral squat change from 3 to 5 months following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2018;48(9):713718. PubMed ID: 29895231 doi:10.2519/jospt.2018.7977

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Sanford BA, Williams JL, Zucker-Levin A, Mihalko WM. Asymmetric ground reaction forces and knee kinematics during squat after Anterior Cruciate Ligament (ACL) reconstruction. Knee. 2016;23(5):820825. PubMed ID: 27262213 doi:10.1016/j.knee.2015.11.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Salem GJ, Salinas R, Harding FV. Bilateral kinematic and kinetic analysis of the squat exercise after anterior cruciate ligament reconstruction. Arch Phys Med Rehabil. 2003;84(8):12111216. PubMed ID: 12917862 doi:10.1016/s0003-9993(03)00034-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Roos PE, Button K, van Deursen RWM. Motor control strategies during double leg squat following anterior cruciate ligament rupture and reconstruction: an observational study. J Neuroeng Rehabil. 2014;11:19. doi:10.1186/1743-0003-11-19

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Ogborn D. Optimizing exercise selection for the asymmetric athlete after anterior cruciate ligament reconstruction. Strength Cond J. 2021;43(4):105114. doi:10.1519/SSC.0000000000000605

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Peebles AT, Williams B III, Queen RM. Bilateral squatting mechanics are associated with landing mechanics in anterior cruciate ligament reconstruction patients. Am J Sports Med. 2021;49(10):26382644. PubMed ID: 34236927 doi:10.1177/03635465211023761

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Petersen W, Taheri P, Forkel P, Zantop T. Return to play following ACL reconstruction: a systematic review about strength deficits. Arch Orthop Trauma Surg. 2014;134(10):14171428. PubMed ID: 25091127 doi:10.1007/s00402-014-1992-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med. 2016;44(7):18611876. PubMed ID: 26772611 doi:10.1177/0363546515621554

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Paterno MV, Schmitt LC, Ford KR, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):19681978. PubMed ID: 20702858 doi:10.1177/0363546510376053

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Hannon JP, Goto S, Singleton S, et al. Effects of anterior cruciate ligament reconstruction on patellofemoral joint stress and lower extremity biomechanics at 12 weeks post-surgery and at time of return to sport in adolescent females. Clin Biomech. 2020;80:105164. doi:10.1016/j.clinbiomech.2020.105164

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Hall M, Stevermer CA, Gillette JC. Gait analysis post anterior cruciate ligament reconstruction: knee osteoarthritis perspective. Gait Posture. 2012;36(1):5660. PubMed ID: 22310303 doi:10.1016/j.gaitpost.2012.01.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Shimizu T, Samaan MA, Tanaka MS, et al. Abnormal biomechanics at 6 months are associated with cartilage degeneration at 3 years after anterior cruciate ligament reconstruction. Arthroscopy. 2019;35(2):511520. PubMed ID: 30473456 doi:10.1016/j.arthro.2018.07.033

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Verstegen M, Falsone S, Orr R, Smith S. Suggestions from the field for return to sports participation following anterior cruciate ligament reconstruction: American football. J Orthop Sports Phys Ther. 2012;42(4):337344. PubMed ID: 22465979 doi:10.2519/jospt.2012.4031

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Chmielewski TL. Asymmetrical lower extremity loading after ACL reconstruction: more than meets the eye. J Orthop Sports Phys Ther. 2011;41(6):374376. PubMed ID: 21628823 doi:10.2519/jospt.2011.0104

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Ishida T, Samukawa M, Kasahara S, Tohyama H. The center of pressure position in combination with ankle dorsiflexion and trunk flexion is useful in predicting the contribution of the knee extensor moment during double-leg squatting. BMC Sports Sci, Med Rehabil. 2022;14(1):127. doi:10.1186/s13102-022-00523-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Ishida T, Samukawa M, Suzuki M, et al. Improvements in asymmetry in knee flexion motion during landing are associated with the postoperative period and quadriceps strength after anterior cruciate ligament reconstruction. Res Sports Med. Published online August 18, 2021. doi:10.1080/15438627.2021.1966010

    • Search Google Scholar
    • Export Citation
  • 20.

    Webster KE, Hewett TE. What is the evidence for and validity of return-to-sport testing after anterior cruciate ligament reconstruction surgery? A systematic review and meta-analysis. Sports Med. 2019;49(6):917929. PubMed ID: 30905035 doi:10.1007/s40279-019-01093-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    McClelland JA, Webster KE, Grant C, Feller J. Alternative modelling procedures for pelvic marker occlusion during motion analysis. Gait Posture. 2010;31(4):415419. PubMed ID: 20176486 doi:10.1016/j.gaitpost.2010.01.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Bell AL, Brand RA, Pedersen DR. Prediction of hip joint centre location from external landmarks. Hum Mov Sci. 1989;8(1):316. doi:10.1016/0167-9457(89)90020-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    de Leva P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J Biomech. 1996;29(9):12231230. PubMed ID: 8872282 doi:10.1016/0021-9290(95)00178-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Song Y, Li L, Albrandt EE, Jensen MA, Dai B. Medial-lateral hip positions predicted kinetic asymmetries during double-leg squats in collegiate athletes following anterior cruciate ligament reconstruction. J Biomech. 2021;128:110787. doi:10.1016/j.jbiomech.2021.110787

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Jean LMY, Chiu LZF. Elevating the noninvolved limb reduces knee extensor asymmetry during squat exercise in persons with reconstructed anterior Cruciate ligament. J Strength Cond Res. 2020;34(8):21202127. PubMed ID: 32541617 doi:10.1519/jsc.0000000000003682

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Straub RK, Barrack AJ, Cannon J, Powers CM. Trunk inclination during squatting is a better predictor of the knee-extensor moment than shank inclination. J Sport Rehabil. 2021;30(6):899904. PubMed ID: 33596542 doi:10.1123/jsr.2020-0397

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):115. PubMed ID: 10907753 doi:10.2165/00007256-200030010-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Ithurburn MP, Paterno MV, Thomas S, et al. Change in drop-landing mechanics over 2 years in young athletes after anterior Cruciate ligament reconstruction. Am J Sports Med. 2019;47(11):26082616. PubMed ID: 31373856 doi:10.1177/0363546519864688

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Critchley ML, Davis DJ, Keener MM, et al. The effects of mid-flight whole-body and trunk rotation on landing mechanics: implications for anterior cruciate ligament injuries. Sports Biomech. 2020;19(4):421437. PubMed ID: 30945626 doi:10.1080/14763141.2019.1595704

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Ishida T, Samukawa M, Endo D, Kasahara S, Tohyama H. Effects of changing center of pressure position on knee and ankle extensor moments during double-leg squatting. J Sports Sci Med. 2022;21(3):341346. PubMed ID: 36157389 doi:10.52082/jssm.2022.341

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Escamilla RF, Macleod TD, Wilk KE, Paulos L, Andrews JR. Anterior cruciate ligament strain and tensile forces for weight-bearing and non-weight-bearing exercises: a guide to exercise selection. J Orthop Sports Phys Ther. 2012;42(3):208220. PubMed ID: 22387600 doi:10.2519/jospt.2012.3768

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Garrison JC, Hannon J, Goto S, Giesler L, Bush C, Bothwell JM. Participants at three months post-operative Anterior Cruciate Ligament Reconstruction (ACL-R) demonstrate differences in lower extremity energy absorption contribution and quadriceps strength compared to healthy controls. Knee. 2018;25(5):782789. PubMed ID: 30001937 doi:10.1016/j.knee.2018.06.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Kawashima T, Omi Y, Kuriyama S, Hoshida T, Sugimoto D. Effect of graft rupture prevention training on young athletes after anterior cruciate ligament reconstruction: an 8-year prospective intervention study. Orthop J Sports Med. 2021;9(1):2325967120973593. doi:10.1177/2325967120973593

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Myer GD, Chu DA, Brent JL, Hewett TE. Trunk and hip control neuromuscular training for the prevention of knee joint injury. Clin Sports Med. 2008;27(3):425448. PubMed ID: 18503876 doi:10.1016/j.csm.2008.02.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Omi Y, Sugimoto D, Kuriyama S, et al. Effect of hip-focused injury prevention training for anterior cruciate ligament injury reduction in female basketball players: a 12-year prospective intervention study. Am J Sports Med. 2018;46(4):852861. PubMed ID: 29360406 doi:10.1177/0363546517749474

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Chijimatsu M, Ishida T, Yamanaka M, et al. Landing instructions focused on pelvic and trunk lateral tilt decrease the knee abduction moment during a single-leg drop vertical jump. Phys Ther Sport. 2020;46:226233. PubMed ID: 32992140 doi:10.1016/j.ptsp.2020.09.010

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1875 1875 87
Full Text Views 102 102 1
PDF Downloads 117 117 2