Effects of Gluteus Medius and Biceps Femoris Stimulation on Reduction of Knee Abduction Moment During a Landing Task

in Journal of Applied Biomechanics

Click name to view affiliation

Dan Wang School of Elite Sport, Shanghai University of Sport, Shanghai, China
College of Acumox and Tuina, Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, JS, China

Search for other papers by Dan Wang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5638-6112
,
Man Wang Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China

Search for other papers by Man Wang in
Current site
Google Scholar
PubMed
Close
,
Vikki Wing-Shan Chu Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China

Search for other papers by Vikki Wing-Shan Chu in
Current site
Google Scholar
PubMed
Close
,
Patrick Shu-Hang Yung Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
Faculty of Medicine, The Hong Kong Jockey Club Sports Medicine and Health Sciences Center, The Chinese University of Hong Kong, Hong Kong, China

Search for other papers by Patrick Shu-Hang Yung in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7214-5503
, and
Daniel T.P. Fong National Center for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom

Search for other papers by Daniel T.P. Fong in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7314-189X *
Restricted access

Anterior cruciate ligament injury prevention should focus primarily on reduction of the knee abduction moment (KAM) in landing tasks. Gluteus medius and hamstring forces are considered to decrease KAM during landing. The effects of different muscle stimulations on KAM reduction were compared using 2 electrode sizes (standard 38 cm2 and half size 19 cm2) during a landing task. Twelve young healthy female adults (22.3 [3.6] y, 1.62 [0.02] m, 50.2 [4.7] kg) were recruited. KAM was calculated under 3 conditions of muscle stimulation (gluteus medius, biceps femoris, and both gluteus medius, and biceps femoris) using 2 electrode sizes, respectively versus no stimulation during a landing task. A repeated-measures analysis of variance determined that KAM differed significantly among stimulation conditions and post hoc analysis revealed that KAM was significantly decreased in conditions of stimulating either the gluteus medius (P < .001) or the biceps femoris (P < .001) with the standard electrode size, and condition of stimulating both gluteus medius and biceps femoris with half-size electrode (P = .012) when compared with the control condition. Therefore, stimulation on the gluteus medius, the biceps femoris, or both muscles could be implemented for the examination of anterior cruciate ligament injury potential.

  • Collapse
  • Expand
  • 1.

    Shultz SJ, Schmitz RJ, Cameron KL, et al. Anterior cruciate ligament research retreat VIII summary statement: an update on injury risk identification and prevention across the anterior cruciate ligament injury continuum, March 14–16, 2019, Greensboro, NC. J Athl Training. 2019;54(9):970984. doi:10.4085/1062-6050-54.084

    • Search Google Scholar
    • Export Citation
  • 2.

    Stevenson JH, Beattie CS, Schwartz JB, et al. Assessing the effectiveness of neuromuscular training programs in reducing the incidence of anterior cruciate ligament injuries in female athletes: a systematic review. Am J Sports Med. 2015;43(2):482490. PubMed ID: 24569703 doi:10.1177/0363546514523388

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Zbrojkiewicz D, Vertullo C, Grayson J. Increasing rates of anterior cruciate ligament reconstruction in young Australians, 2000–2015. Med J Aust. 2018;208(8):354358. PubMed ID: 29669497 doi:10.5694/mja17.00974

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Montalvo A, Schneider D, Silva P, et al. ‘What’s my risk of sustaining an ACL injury while playing football (soccer)?’ A systematic review with meta-analysis. Br J Sports Med. 2019;53(21):13331340. PubMed ID: 29599121 doi:10.1136/bjsports-2016-097261

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bates N, Nesbitt R, Shearn J, et al. Knee abduction affects greater magnitude of change in ACL and MCL strains than matched internal tibial rotation in vitro. Clin Orthop Relat Res. 2017;475(10):23852396. PubMed ID: 28455730 doi:10.1007/s11999-017-5367-9

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bates N, Nesbitt R, Shearn J, et al. Relative strain in the anterior cruciate ligament and medial collateral ligament during simulated jump landing and sidestep cutting tasks: implications for injury risk. Am J Sports Med. 2015; 43(9):22592269. PubMed ID: 26150588 doi:10.1177/0363546515589165

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hewett T, Myer G, Ford K, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492501. PubMed ID: 15722287 doi:10.1177/0363546504269591

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bencke J, Aagaard P, Zebis M. Muscle activation during ACL injury risk movements in young female athletes: a narrative review. Front physiol. 2018;9(445):110. doi:10.3389/fphys.2018.00445

    • Search Google Scholar
    • Export Citation
  • 9.

    Hewett T, Ford K, Xu Y, et al. Utilization of ACL injury biomechanical and neuromuscular risk profile analysis to determine the effectiveness of neuromuscular training. Am J Sports Med. 2016;44(12):31463151. PubMed ID: 27474385 doi:10.1177/0363546516656373

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bates N, Schilaty N, Nagelli C, et al. Multiplanar loading of the knee and its influence on anterior cruciate ligament and medial collateral ligament strain during simulated landings and noncontact tears. Am J Sports Med. 2019;47(8):18441853. PubMed ID: 31150273 doi:10.1177/0363546519850165

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Krosshaug T, Steffen K, Kristianslund E, et al. The vertical drop jump is a poor screening test for ACL injuries in female elite soccer and handball players: a prospective cohort study of 710 athletes. Am J Sports Med. 2016;44(4):874883. PubMed ID: 26867936 doi:10.1177/0363546515625048

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Leppanen M, Pasanen K, Kujala UM, et al. Stiff landings are associated with increased ACL injury risk in young female basketball and floorball players. Am J Sports Med. 2016;45(2):386393. PubMed ID: 27637264 doi:10.1177/0363546516665810

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ishida T, Koshino Y, Yamanaka M, et al. Larger hip external rotation motion is associated with larger knee abduction and internal rotation motions during a drop vertical jump. Sports Biomech. 2021;4:115. doi:10.1080/14763141.2021.1881151

    • Search Google Scholar
    • Export Citation
  • 14.

    Ueno R, Navacchia A, Dicesare C, et al. Knee abduction moment is predicted by lower gluteus medius force and larger vertical and lateral ground reaction forces during drop vertical jump in female athletes. J Biomech. 2020;103:109669. doi:10.1016/j.jbiomech.2020.109669

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hewett T, Myer G, Ford K, et al. Mechanisms, prediction, and prevention of ACL injuries: cut risk with three sharpened and validated tools. J Orthop Res. 2016;34(11):18431855. PubMed ID: 27612195 doi:10.1002/jor.23414

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Azmi N, Ding Z, Xu R, et al. Activation of biceps femoris long head reduces tibiofemoral anterior shear force and tibial internal rotation torque in healthy subjects. PLoS One. 2018;13(1):e0190672. doi:10.1371/journal.pone.0190672

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Oztekin HH, Bayindir NS, Guner A. Preventing anterior translation of the human knee joint by contracting the biceps femoris muscle using an accelerometer and an electrical muscle stimulator device. Poster presented at: 2019 Medical Technologies Congress (TIPTEKNO). IEEE. 2019. doi:10.1109/TIPTEKNO.2019.8895201

    • Search Google Scholar
    • Export Citation
  • 18.

    Krosshaug T, Nakamae A, Boden B, et al. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med. 2007;35(3):359367. doi:10.1177/0363546506293899

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ojanguren EI, Kostic M, Bejarano NC, et al. Workshop on transcutaneous functional electrical stimulation. In: Pons J, Raya R, González J, eds. Emerging therapies in Neurorehabilitation II. Biosystems & Biorobotics. Springer; 2016:273301. doi:10.1007/978-3-319-24901-8_11

    • Search Google Scholar
    • Export Citation
  • 20.

    Kristianslund E, Faul O, Bahr R, et al. Sidestep cutting technique and knee abduction loading: implications for ACL prevention exercises. Br J Sports Med. 2012;48(9):779783. doi:10.1136/bjsports-2012-091370

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bell D, Pennuto A, Trigsted S. The effect of exertion and sex on vertical ground reaction force variables and landing mechanics. J Strength Cond Res. 2016;30(6):16611669. PubMed ID: 26562710 doi:10.1519/JSC.0000000000001253

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Yeow CH, Lee PV, Goh JC. Shod landing provides enhanced energy dissipation at the knee joint relative to barefoot landing from different heights. Knee. 2011;18(6):407411. PubMed ID: 20797866 doi:10.1016/j.knee.2010.07.011

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983;105(2):136144. PubMed ID: 6865355 doi:10.1115/1.3138397

    • Search Google Scholar
    • Export Citation
  • 24.

    Shimokochi Y, Shultz S. Mechanisms of noncontact anterior cruciate ligament injury. J Athl Train. 2008;43(4):396408. PubMed ID: 18668173 doi:10.4085/1062-6050-43.4.396

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Fong D, Chu V, Chan K. Myoelectric stimulation on peroneal muscles resists simulated ankle sprain motion. J Biomech. 2012;45(11):20552057. PubMed ID: 22658077 doi:10.1016/j.jbiomech.2012.04.025

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hermens H, Freriks B, Disselhorst-Klug C, et al. Development of recommendations for SEMG sensors and sensor placement procedures. J Orthop Res. 2000;10(5):361374. doi:10.1016/s1050-6411(00)00027-4

    • Search Google Scholar
    • Export Citation
  • 27.

    Lyons G, Leane G, Clarke-Moloney M, et al. An investigation of the effect of electrode size and electrode location on comfort during stimulation of the gastrocnemius muscle. Med Eng Phys. 2004;26(10):873878. PubMed ID: 15567703 doi:10.1016/j.medengphy.2004.08.003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Vaughan CL, Davis BL, Oíconnor JC. Dynamics of Human Gait. Human Kinetics; 1999.

  • 29.

    Czasche M, Goodwin J, Bull A, et al. Effects of an 8-week strength training intervention on tibiofemoral joint loading during landing: a cohort study. BMJ Open Sport Exerc Med. 2018;4(1):e000273. PubMed ID: 29387442 doi:10.1136/bmjsem-2017-000273

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Fujita K. Biological interface using electrical stimulation. Hum Interface Soc Hum Interface. 2004;6(1):3942.

  • 31.

    Watanabe K, Oka M, Mori H. Feedback control of middle finger joint using functional electrical stimulation based on the electrical stimulus intensity-joint torque relation model. Poster presented at: International Conference on Human-Computer Interaction. Springer; 2020:417434.

    • Search Google Scholar
    • Export Citation
  • 32.

    Knaflitz M, Merletti R, De Luca CJ. Inference of motor unit recruitment order in voluntary and electrically elicited contractions. J Appl Physiol. 1990;68(4):16571667. PubMed ID: 2347805 doi:10.1152/jappl.1990.68.4.1657

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Neamatallah Z, Herrington L, Jones R. An investigation into the role of gluteal muscle strength and EMG activity in controlling hip and knee motion during landing tasks. Phys Ther Sport. 2020;43:230235. PubMed ID: 31902735 doi:10.1016/j.ptsp.2019.12.008

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Maniar N, Schache A, Sritharan P, et al. Non-knee-spanning muscles contribute to tibiofemoral shear as well as valgus and rotational joint reaction moments during unanticipated sidestep cutting. Sci Rep. 2018;8(1):110. doi:10.1038/s41598-017-19098-9

    • Search Google Scholar
    • Export Citation
  • 35.

    Lerner Z, DeMers M, Delp S, et al. How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces. J Biomech. 2015;48(4):644650. PubMed ID: 25595425 doi:10.1016/j.jbiomech.2014.12.049

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Demers M, Pal S, Delp S. Changes in tibiofemoral forces due to variations in muscle activity during walking. J Orthop Res. 2014;32(6):769776. PubMed ID: 24615885 doi:10.1002/jor.22601

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Fukuda Y, Woo S, Loh J, et al. A quantitative analysis of valgus torque on the ACL: a human cadaveric study. J Orthop Res. 2003; 21(6):11071112. PubMed ID: 14554225 doi:10.1016/S0736-0266(03)00084-6

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Zhang L, Wang G. Dynamic and static control of the human knee joint in abduction-adduction. J Biomech. 2001;34(9):11071115. PubMed ID: 11506781 doi:10.1016/S0021-9290(01)00080-X

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Bull AJ, Rane L. Functional electrical stimulation. US Patent App. 2018;15(885):365.

  • 40.

    Williams D, Bilodeau M. Assessment of voluntary activation by stimulation of one muscle or two synergistic muscles. Muscle Nerve. 2004;29(1):112119. PubMed ID: 14694506 doi:10.1002/mus.10508

    • Search Google Scholar
    • Export Citation
  • 41.

    Gobbo M, Gaffurini P, Bissolotti L, et al. Transcutaneous neuromuscular electrical stimulation: influence of electrode positioning and stimulus amplitude settings on muscle response. Eur J Appl Physiol. 2011;111(10):24512459. PubMed ID: 21717122 doi:10.1007/s00421-011-2047-4

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Ullah K, Cescon C, Afsharipour B, et al. Automatic detection of motor unit innervation zones of the external anal sphincter by multichannel surface EMG. J Electromyogr Kinesiol. 2014;24(6):860867. PubMed ID: 24948528 doi:10.1016/j.jelekin.2014.05.003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Rainoldi A, Melchiorri G, Caruso I. A method for positioning electrodes during surface EMG recordings in lower limb muscles. J Neurosci Methods. 2004;134(1):3743. PubMed ID: 15102501 doi:10.1016/j.jneumeth.2003.10.014

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Hollman J, Ginos B, Kozuchowski J, et al. Relationships between knee valgus, hip-muscle strength, and hip-muscle recruitment during a single-limb step-down. J Sport Rehabil. 2009;18(1):104117. PubMed ID: 19321910 doi:10.1123/jsr.18.1.104

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Morishige Y, Harato K, Kobayashi S, et al. Difference in leg asymmetry between female collegiate athletes and recreational athletes during drop vertical jump. J Orthop Surg Res. 2019;14(1):424. PubMed ID: 31822295 doi:10.1186/s13018-019-1490-5

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Myer GD, Ford KR, Stasi SL, et al. High knee abduction moments are common risk factors for patellofemoral pain (PFP) and anterior cruciate ligament (ACL) injury in girls: is PFP itself a predictor for subsequent ACL injury? Br J Sports Med. 2015;49(2):118122. PubMed ID: 24687011 doi:10.1136/bjsports-2013-092536

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Filipovic A, Kleinöder H, Dörmann U, et al. Electromyostimulation—a systematic review of the effects of different electromyostimulation methods on selected strength parameters in trained and elite athletes. J Strength Cond Res. 2012;26(9):26002614. PubMed ID: 22067247 doi:10.1519/JSC.0b013e31823f2cd1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Moses B, Orchard J, Orchard J. Systematic review: annual incidence of ACL injury and surgery in various populations. Res Sports Med. 2012;20(3–4):157179. PubMed ID: 22742074 doi:10.1080/15438627.2012.680633

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1023 1023 68
Full Text Views 106 106 0
PDF Downloads 123 123 0