Rapid Change in the Direction of Hand Movement to Increase Hand Propulsion During Front Crawl Swimming

Click name to view affiliation

Shigetada Kudo Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan

Search for other papers by Shigetada Kudo in
Current site
Google Scholar
PubMed
Close
*
,
Yuji Matsuda Department of Sports Research, Japan Institute of Sports Sciences, Tokyo, Japan
Faculty of Sport Sciences, Nihon Fukushi University, Aichi, Japan

Search for other papers by Yuji Matsuda in
Current site
Google Scholar
PubMed
Close
,
Yoshihisa Sakurai Faculty of Sport Sciences, Nihon Fukushi University, Aichi, Japan
R&D Centre, Descente Japan Ltd, Osaka, Japan

Search for other papers by Yoshihisa Sakurai in
Current site
Google Scholar
PubMed
Close
, and
Yasushi Ikuta Department of Sports Sciences, Osaka Kyoiku University, Osaka, Japan

Search for other papers by Yasushi Ikuta in
Current site
Google Scholar
PubMed
Close
Restricted access

This study aims to investigate the difference in hand acceleration induced by rapid changes in hand movement directions and propulsion between fast and slow groups of swimmers during front crawl swimming. Twenty-two participants, consisting of 11 fast and 11 slow swimmers, performed front crawl swimming at their maximal effort. Hand acceleration and velocity and the angle of attack were measured using a motion capture system. The dynamic pressure approach was used to estimate hand propulsion. In the insweep phase, the fast group attained significantly higher hand acceleration than the slow group in the lateral and vertical directions (15.31 [3.44] m·s−2 vs 12.23 [2.60] m·s−2 and 14.37 [1.70] m·s−2 vs 12.15 [1.21] m·s−2), and the fast group exerted significantly larger hand propulsion than the slow group (53 [5] N vs 44 [7] N). Although the fast group attained large hand acceleration and propulsion during the insweep phase, the hand velocity and the angle of attack were not significantly different in the 2 groups. The rapid change in hand movement direction could be considered in the technique of underwater arm stroke, particularly in the vertical direction, to increase hand propulsion during front crawl swimming.

Kudo (kudo.shigetada.ft@u.tsukuba.ac.jp) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Morison JR, O’Brien MP, Johnson JW, Schaaf SA. The forces exerted by surface waves on piles. J Pet Technol. 1950;2:149157. doi:10.2118/950149-G

    • Search Google Scholar
    • Export Citation
  • 2.

    Sanders S. Hydrodynamic characteristics of a swimmer’s hand. J Appl Biomech. 1999;15(1):326. doi:10.1123/jab.15.1.3

  • 3.

    Massey B, Ward-Smith J. Mechanics of Fluids. 7th ed. Nelson Thornes; 1998.

  • 4.

    Dickinson MH, Götz KG. Unsteady aerodynamic performance of model wings at low Reynolds numbers. J Exp Biol. 1993;174(1):4564. doi:10.1242/jeb.174.1.45

    • Search Google Scholar
    • Export Citation
  • 5.

    Sarpkaya T, Isaacson M. Mechanics of Wave Forces on Offshore Structures. Van Nostrand Reinhold; 1981.

  • 6.

    Rouboa A, Silva A, Leal L, Rocha J, Alves F. The effect of swimmer’s hand/forearm acceleration on propulsive forces generation using computational fluid dynamics. J Biomech. 2006;39(7):12391248. PubMed ID: 15950980 doi:10.1016/j.jbiomech.2005.03.012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Samson M, Monnet T, Bernard A, Lacouture P, David L. Analysis of a swimmer’s hand and forearm in impulsive start from rest using computational fluid dynamics in unsteady flow conditions. J Biomech. 2018;67:157165. PubMed ID: 29269003 doi:10.1016/j.jbiomech.2017.12.003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Kudo S, Vennell R, Wilson B. The effect of unsteady flow due to acceleration on hydrodynamic forces acting on the hand in swimming. J Biomech. 2013;46(10):16971704. PubMed ID: 23684079 doi:10.1016/j.jbiomech.2013.04.002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Lauder MA, Dabnichki P. Estimating propulsive forces—Sink or swim? J Biomech. 2005;38(10):19841990. PubMed ID: 16045915 doi:10.1016/j.jbiomech.2005.05.026

    • Search Google Scholar
    • Export Citation
  • 10.

    Dickinson MH. The effects of wing rotation on unsteady aerodynamic performance at low Reynolds numbers. J Exp Biol. 1994;192(1):179206. PubMed ID: 9317589 doi:10.1242/jeb.192.1.179

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Pai YC, Hay JG. A hydrodynamic study of the oscillation motion in swimming. J Appl Biomech. 1988;4(1):2137. doi:10.1123/ijsb.4.1.21

  • 12.

    Matsuuchi K, Miwa T, Nomura T, Sakakibara J, Shintani H, Ungerechts, BE. Unsteady flow filed around a human hand and propulsive force in swimming. J Biomech. 2009;42(1):4247. PubMed ID: 19054519 doi:10.1016/j.jbiomech.2008.10.009

    • Search Google Scholar
    • Export Citation
  • 13.

    Takagi H, Nakashima M, Ozaki T, Matsuuchi K. Unsteady hydrodynamic forces acting on a robotic arm and its flow field: application to the crawl stroke. J Biomech. 2014;47(6):14011408. PubMed ID: 24524992 doi:10.1016/j.jbiomech.2014.01.046

    • Search Google Scholar
    • Export Citation
  • 14.

    Maglischo EW. Swimming Fastest. Human Kinetics; 2003.

  • 15.

    Hay JG. Cycle rate, length, and speed of progression in human locomotion. J Appl Biomech. 2002;18(3):257270. doi:10.1123/jab.18.3.257

    • Search Google Scholar
    • Export Citation
  • 16.

    Samson M, Monnet T, Bernard A, Lacouture P, David L. Kinematic hand parameters in front crawl at different paces of swimming. J Biomech. 2015;48(14):37433750. PubMed ID: 26433921 doi:10.1016/j.jbiomech.2015.07.034

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Gourgoulis V, Boli A, Aggeloussis N, Antoniou P, Toubekis A, Mavromatis G. The influence of the hand’s acceleration and the relative contribution of drag and lift forces in front crawl swimming. J Sports Sci. 2015;33(7):696712. PubMed ID: 25429796 doi:10.1080/02640414.2014.962571

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Deschodt VJ, Arsac LM, Rouard AH. Relative contribution of arms and legs in humans to propulsion in 25-m sprint front-crawl swimming. Eur J Appl Physiol. 1999;80(3):192199. doi:10.1007/s004210050581

    • Search Google Scholar
    • Export Citation
  • 19.

    Cohen RCZ, Cleary PW, Mason BR, Pease DL. Forces during front crawl swimming at different stroke rates. Sports Eng. 2018;21(1):6373. doi:10.1007/s12283-017-0246-x

    • Search Google Scholar
    • Export Citation
  • 20.

    Kudo S, Sakurai Y, Miwa T, Matsuda Y. Relationship between shoulder roll and hand propulsion in the front crawl stroke. J Sports Sci. 2017;35(10):945952. PubMed ID: 27414043 doi:10.1080/02640414.2016.1206208

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Winter DA. Biomechanics and Motor Control of Human Movement. John Wiley & Sons; 1990.

  • 22.

    Yu B, Gabriel D, Noble L, An KN. Estimate of the optimum cutoff frequency for the butterworth low-pass digital filter. J Appl Biomech. 1999;15(3):318329. doi:10.1123/jab.15.3.318

    • Search Google Scholar
    • Export Citation
  • 23.

    Schleihauf RE. A hydrodynamic analysis of swimming propulsion. In: Terauds J, Bedingfield EW, Eds. Swimming III. University Parck Press; 1979:70109.

    • Search Google Scholar
    • Export Citation
  • 24.

    Matsuda Y, Sakurai Y, Akashi K, Kubo Y. A practical estimation method for center of mass velocity in swimming direction during front crawl swimming, J Appl Biomech. 2018;34(4):342347. PubMed ID: 29613822 doi:10.1123/jab.2017-0188

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates; 1988.

  • 26.

    Cumming G. Understanding the New Statistics—Effect Sizes, Confidence Intervals, Meta-Analysis. Routledge; 2012.

  • 27.

    Fritz CO, Morris PE, Richler JJ. Effect size estimates: current use, calculations, and interpretation. J Exp Psychol: Gen. 2012;141(1):218. PubMed ID: 21823805 doi:10.1037/a0024338

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Takagi H, Shimada S, Miwa T, Kudo S, Sanders R, Matsuuchi K. Unsteady hydrodynamic forces acting on a hand and its flow during sculling motion. Hum Mov Sci. 2014;38:133142. PubMed ID: 25310026 doi:10.1016/j.humov.2014.09.003

    • Search Google Scholar
    • Export Citation
  • 29.

    McCabe CB, Sanders RH, Psycharakis SG. Upper limb kinematic differences between between breathing and non-breathing conditions in front crawl sprint swimming. J Biomech. 2015;48(15):39954001. PubMed ID: 26456423 doi:10.1016/j.jbiomech.2015.09.012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Koga D, Gonjo T, Kawai E, et al. The effects of exceeding stroke frequency of maximal effort on hand kinematics and hand propulsive force in front crawl. Sports Biomech. Published online September 29, 2020. doi:10.1080/14763141.2020.1814852

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Chatard JC, Collomp C, Maglischo E, Maglischo C. Swimming skill and stroking characteristics of front crawl swimmers. Int J Sports Med. 1990;11(2):156161. PubMed ID: 2338378 doi:10.1055/s-2007-1024782

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Cappaert JM, Pease DL, Troup JP. Three-dimensional analysis of the men’s 100-m freestyle during the 1992 Olympic games. J Appl Biomech. 1995;11(1):103112. doi:10.1123/jab.11.1.103

    • Search Google Scholar
    • Export Citation
  • 33.

    Hellard P, Dekerle J, Avalos M, Caudal N, Knopp M, Hausswirth C. Kinematics measures and stroke rate variability in elite female 200-m swimmers in the four swimming techniques: Athens 2004 Olympic semi-finalists and French National 2004 Championship semi-finalists. J Sports Sci. 2008;26(1):3546. PubMed ID: 17896287 doi:10.1080/02640410701332515

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Payton C, Baltzopoulos V, Bartlett R. Contributions of rotations of the trunk and upper extremity to hand velocity during front crawl swimming. J Appl Biomech. 2002;18(3):243256. doi:10.1123/jab.18.3.243

    • Search Google Scholar
    • Export Citation
  • 35.

    Kudo S, Matsuda Y, Yanai T, Sakurai Y. Contribution to upper trunk rotation to hand forward-backward movement and propulsion in front crawl strokes. Hum Mov Sci. 2019;66:467476. PubMed ID: 31176258 doi:10.1016/j.humov.2019.05.023

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1466 1015 21
Full Text Views 478 225 0
PDF Downloads 293 24 0