The aerodynamics of the skier’s equipment and the effect of postural changes on the aerodynamic forces acting on the skier during downhill speed racing have been studied theoretically. The aerodynamic characteristics of skier and equipment have been determined by a source panel method based on the velocity potential theory. The calculations indicate that the skier’s torso should be slightly lifted from the tangential direction of downhill during skiing, thus causing a lift force and reducing the friction between the skis and snow. The drag of the torso—tilted by a few degrees—will remain almost the same as the drag of the torso in strict tangential direction. The force acting on the skier’s legs can be directed according to individual needs. The shape of the leg spoilers will give the wanted drag/lift ratio. The optimum shape of the helmet depends on the skiing style. The results introduced here are obtained from theoretical calculations, and their validity should first be tested in a wind tunnel and finally during the normal skiing performance. The calculated drag forces, which are based on the velocity potential theory, do not include the base drag of the skier’s body.