A Biomechanical Approach to Alpine Ski Binding Design

in Journal of Applied Biomechanics
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

A new approach to ski binding design is advanced. It begins with a release locus derived from injury mechanics research and knowledge of the expected loading conditions and then incorporates these into the final binding design. A mechanical ski binding designed by following the new approach is presented. This binding offers a number of performance features not found in commercially available designs. One feature is the ability to eliminate the axial force supported by the tibial shaft from affecting release in forward bending. A second feature is the binding’s ability to release according to virtually any preprogrammed locus of the combination of moments in both bending and torsion. A third feature is a release mechanism that is insensitive to the common frictional forces that affect the release consistency of conventional heel/toe bindings. In addition to these features, the binding offers a variety of operational conveniences. The presentation of the binding not only describes the design details but also evaluates the release performance (i.e., locus and consistency) based upon laboratory tests under quasistatic loading.

Glenn S. Wunderly and Maury L. Hull are with the Department of Mechanical Engineering, University of California, Davis, CA 95616.

All Time Past Year Past 30 Days
Abstract Views 669 573 21
Full Text Views 3 3 0
PDF Downloads 5 5 0