Three-Dimensional Interactions in a Two-Segment Kinetic Chain. Part II: Application to the Throwing Arm in Baseball Pitching

in Journal of Applied Biomechanics
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Fastball pitches of eight collegiate baseball pitchers were filmed using the Direct Linear Transformation (DLT) method of three-dimensional (3D) cinematography. Coordinate data were obtained, and the model developed by Feltner and Dapena (1989) was used to fractionate the 3D angular acceleration of the upper arm and distal segment (the forearm, the hand, and prior to release, the baseball) of the throwing arm into terms associated with the joint torques exerted on the segments and the kinematic variables used to define the motions of the segments. The findings indicated that the extreme external rotation of the upper arm during the pitch was due mainly to the sequential actions of the horizontal adduction and abduction muscles at the shoulder. The study also found that the rapid elbow extension prior to ball release was due primarily to the counterclockwise angular velocity of the upper arm and trunk (viewed from above) that occurred during the pitch, and not to the elbow extensor muscles.

Michael E. Feltner is with the Department of Sports Medicine and Physical Education, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA 90263.

All Time Past Year Past 30 Days
Abstract Views 239 159 19
Full Text Views 20 9 1
PDF Downloads 24 12 4