Statistical Parametric Mapping as a Measure of Differences Between Limbs: Applications to Clinical Populations

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

In healthy individuals, symmetrical lower-extremity movement is often assumed and calculated using discrete points during various tasks. However, measuring overall movement patterns using methods such as statistical parametric mapping (SPM) may allow for better interpretation of human movement. This study demonstrated the ability of SPM to assess interlimb differences in lower-extremity movement during 2 example tasks: running and landing. Three-dimensional motion analysis was used to determine sagittal and frontal plane lower-extremity joint angles in (1) young and older individuals during running and (2) patients with anterior cruciate ligament reconstruction and uninjured control athletes during landing. Interlimb differences within each group were compared using SPM and paired t tests on peak discrete angles. No differences between limbs were found between young and older runners using SPM. Peak ankle eversion and plantar flexion angles differed between limbs in young and older runners. Sagittal plane hip angle varied between limbs in uninjured control athletes. Frontal plane ankle angle and sagittal plane knee and hip angles differed between limbs in patients with anterior cruciate ligament reconstruction using SPM and discrete analysis. These data suggest that SPM can be useful to determine clinically meaningful interlimb differences during running and landing in multiple populations.

Hughes-Oliver and Queen are with the Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA. Harrison is with the Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA, USA. Williams is with Nike Sport Research Lab, Nike, Inc, Beaverton, OR, USA.

Hughes-Oliver (cnh4ph@vt.edu) is corresponding author.
Journal of Applied Biomechanics
Article Sections
References
  • 1.

    Zifchock RADavis IHamill J. Kinetic asymmetry in female runners with and without retrospective tibial stress fractures. J Biomech. 2006;39(15):27922797. PubMed ID: 16289516 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Fitzgerald GKAxe MJSnyder-Mackler L. Proposed practice guidelines for nonoperative anterior cruciate ligament rehabilitation of physically active individuals. J Orthop Sports Phys Ther. 2000;30(4):194203. PubMed ID: 10778796 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Crenshaw SJRichards JG. A method for analyzing joint symmetry and normalcy, with an application to analyzing gait. Gait Posture. 2006;24(4):515521. PubMed ID: 16427288 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Robinson RHerzog WNigg B. Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry. J Manipulative Physiol Ther. 1987;10(4):172176.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Herzog WNigg BMRead LJOlsson E. Asymmetries in ground reaction force patterns in normal human gait. Med Sci Sports Exerc. 1989;21(1):110114. PubMed ID: 2927295 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Palmieri-Smith RMLepley LK. Quadriceps strength asymmetry after anterior cruciate ligament reconstruction alters knee joint biomechanics and functional performance at time of return to activity. The Am J Sports Med. 2015;43(7):16621669. PubMed ID: 25883169 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Bennell KCrossley KWrigley TNitschke J. Test–retest reliability of selected ground reaction force parameters and their symmetry during running. J Appl Biomech. 1999;15(3):330336. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Lee MReid SLElliott BCLloyd DG. Running biomechanics and lower limb strength associated with prior hamstring injury. Med Sci Sports Exerc. 2009;41(10):19421951. PubMed ID: 19727017 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Brown TNPalmieri-Smith RMMcLean SG. Differences between sexes and limbs in hip and knee kinematics and kinetics during anticipated and unanticipated jump landings: implications for ACL injury. Br J Sports Med. 2009;43(13):10491056. PubMed ID: 19372596 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Sinsurin KSrisangboriboon SVachalathiti R. Side-to-side differences in lower extremity biomechanics during multi-directional jump landing in volleyball athletes. Eur J Sport Sci. 2017;17(6):699709. PubMed ID: 28394742 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Edwards SSteele JRCook JLPurdam CRMcGhee DE. Lower limb movement symmetry cannot be assumed when investigating the stop-jump landing. Med Sci Sports Exerc. 2012;44(6):11231130. PubMed ID: 22595986 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Friston KJHolmes APWorsley KJPoline JPFrith CDFrackowiak RS. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp. 1994;2(4):189210. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Robinson MADonnelly CJTsao JVanrenterghem J. Impact of knee modeling approach on indicators and classification of ACL injury risk. Med Sci Sports Exerc. 2013;46:12691276. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Pataky TCRobinson MAVanrenterghem J. Vector field statistical analysis of kinematic and force trajectories. J Biomech. 2013;46(14):23942401. PubMed ID: 23948374 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Pataky TC. Generalized n-dimensional biomechanical field analysis using statistical parametric mapping. J Biomech. 2010;43(10):19761982. PubMed ID: 20434726 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Pataky TCVanrenterghem JRobinson MA. Zero- vs. one-dimensional, parametric vs non-parametric, and confidence interval vs hypothesis testing procedures in one-dimensional biomechanical trajectory analysis. J Biomech. 2015;48(7):12771285. PubMed ID: 25817475 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Robinson MAVanrenterghem JPataky TC. Statistical Parametric Mapping (SPM) for alpha-based statistical analyses of multi-muscle EMG time-series. J Electromyogr Kinesiol. 2015;25(1):1419. PubMed ID: 25465983 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    De Ridder RWillems TVanrenterghem JRobinson MARoosen P. Lower limb landing biomechanics in subjects with chronic ankle instability. Med Sci Sports Exerc. 2015;47(6):12251231. PubMed ID: 25225885 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Herbaut AChavet PRoux MGuéguen NBarbier FSimoneau-Buessinger E. The influence of shoe aging on children running biomechanics. Gait Posture. 2017;56:123128. PubMed ID: 28544949 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Vanrenterghem JVenables EPataky TRobinson MA. The effect of running speed on knee mechanical loading in females during side cutting. J Biomech. 2012;45(14):24442449. PubMed ID: 22835648 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    King ERichter CFranklyn-Miller Aet al. Whole-body biomechanical differences between limbs exist 9 months after ACL reconstruction across jump/landing tasks. Scand J Med Sci Sports. 2018;28(12):25672578. PubMed ID: 29972874 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    King ERichter CFranklyn-Miller Aet al. Biomechanical but not timed performance asymmetries persist between limbs 9 months after ACL reconstruction during planned and unplanned change of direction. J Biomech. 2018;81:93103. PubMed ID: 30322642 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Daly CPersson UMTwycross-Lewis RWoledge RCMorrissey D. The biomechanics of running in athletes with previous hamstring injury: a case-control study. Scand J Med Sci Sports. 2016;26(4):413420. PubMed ID: 25913546 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Springer SGottlieb ULozin M. Spatiotemporal gait parameters as predictors of lower-limb overuse injuries in military training. Scientific World J. 2016;2016:15. PubMed ID: 27478864 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Queen RMAttarian DEBolognesi MPButler RJ. Bilateral symmetry in lower extremity mechanics during stair ascent and descent following a total hip arthroplasty: a one-year longitudinal study. Clin Biomech. 2015;30(1):5358. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Queen RMButler RJAdams Jr SBDeOrio JKEasley MENunley JA. Bilateral differences in gait mechanics following total ankle replacement: a two year longitudinal study. Clin Biomech. 2014;29(4):418422. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Gardinier ESDi Stasi SManal KBuchanan TSSnyder-Mackler L. Knee contact force asymmetries in patients who failed return-to-sport readiness criteria 6 months after anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(12):29172925. PubMed ID: 25318940 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Dufek JSBates BT. Biomechanical factors associated with injury during landing in jump sports. Sports Med. 1991;12(5):326337. PubMed ID: 1763250 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Taunton JRyan MClement DMcKenzie DLloyd-Smith DZumbo B. A prospective study of running injuries: the Vancouver Sun Run “In Training” clinics. Br J Sports Med. 2003;37(3):239244. PubMed ID: 12782549 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Bus SA. Ground reaction forces and kinematics in distance running in older-aged men. Med Sci Sports Exerc. 2003;35(7):11671175. PubMed ID: 12840638 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    McKean KAManson NAStanish WD. Musculoskeletal injury in the masters runners. Clin J Sport Med. 2006;16(2):149154. PubMed ID: 16603885 doi:

  • 32.

    Zifchock RADavis IHamill J. Kinetic asymmetry in female runners with and without retrospective tibial stress fractures. J Biomech. 2006;39(15):27922797. PubMed ID: 16289516 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hewett TEMyer GDFord KRet al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492501. PubMed ID: 15722287 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Taunton JERyan MBClement DBMcKenzie DCLloyd-Smith DRZumbo BD. A prospective study of running injuries: the Vancouver Sun Run “In Training” clinics. Br J Sports Med. 2003;37(3):239244. PubMed ID: 12782549 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Karamanidis KArampatzis A. Mechanical and morphological properties of different muscle-tendon units in the lower extremity and running mechanics: effect of aging and physical activity. J Exp Biol. 2005;208(Pt 20):39073923. PubMed ID: 16215218 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Larsson LGrimby GKarlsson J. Muscle strength and speed of movement in relation to age and muscle morphology. J Appl Physiol Respir Environ Exerc Physiol. 1979;46(3):451456. PubMed ID: 438011

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Fields KB. Running injuries—changing trends and demographics. Curr Sports Med Rep. 2011;10(5):299303. PubMed ID: 23531978 doi:

  • 38.

    Perry MCCarville SFSmith ICRutherford OMNewham DJ. Strength, power output and symmetry of leg muscles: effect of age and history of falling. Eur J Appl Physiol. 2007;100(5):553561. PubMed ID: 16847676 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Paterno MVSchmitt LCFord KRet al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):19681978. PubMed ID: 20702858 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Paterno MVRauh MJSchmitt LCFord KRHewett TE. Incidence of contralateral and ipsilateral anterior cruciate ligament (ACL) injury after primary ACL reconstruction and return to sport. Clin J Sport Med. 2012;22(2):116121. PubMed ID: 22343967 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Dai BButler RJGarrett WEQueen RM. Anterior cruciate ligament reconstruction in adolescent patients: limb asymmetry and functional knee bracing. Am J Sports Med. 2012;40(12):27562763. PubMed ID: 23035150 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Dai BButler RJGarrett WEQueen RM. Using ground reaction force to predict knee kinetic asymmetry following anterior cruciate ligament reconstruction. Scand J Med Sci Sports. 2014;24(6):974981. PubMed ID: 24118495 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Paterno MVFord KRMyer GDHeyl RHewett TE. Limb asymmetries in landing and jumping 2 years following anterior cruciate ligament reconstruction. Clin J Sport Med. 2007;17(4):258262. PubMed ID: 17620778 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Gardinier ESDi Stasi SManal KBuchanan TSSnyder-Mackler L. Knee contact force asymmetries in patients who failed return-to-sport readiness criteria 6 months after anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(12):29172925. PubMed ID: 25318940 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Schmitt LCPaterno MVFord KRMyer GDHewett TE. Strength asymmetry and landing mechanics at return to sport after anterior cruciate ligament reconstruction. Med Sci Sports Exerc. 2015;47(7):14261434. PubMed ID: 25373481 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Butler RJDai BGarrett WEQueen RM. Changes in landing mechanics in patients following anterior cruciate ligament reconstruction when wearing an extension constraint knee brace. Sports Health. 2014;6(3):203209. PubMed ID: 24790689 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Brett MPenny WKiebel S. Introduction to random field theory. In Human Brain Function. 2nd ed. 2003.

  • 48.

    Pataky TC. One-dimensional statistical parametric mapping in Python. Comput Methods Biomech Biomed Eng. 2012;15(3):295301. PubMed ID: 21756121 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Gokeler AHof AArnold MDijkstra PPostema KOtten E. Abnormal landing strategies after ACL reconstruction. Scand J Med Sci Sports. 2010;20(1):e12e19. PubMed ID: 19210671 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Xergia SAPappas EZampeli FGeorgiou SGeorgoulis AD. Asymmetries in functional hop tests, lower extremity kinematics, and isokinetic strength persist 6 to 9 months following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2013;43(3):154162. PubMed ID: 23322072 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Van der Harst JGokeler AHof AL. Leg kinematics and kinetics in landing from a single-leg hop for distance. A comparison between dominant and non-dominant leg. Clin Biomech. 2007;22(6):674680. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Ferber RDavis IMWilliams DS 3rd. Gender differences in lower extremity mechanics during running. Clin Biomech. 2003;18(4):350357. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 192 192 139
Full Text Views 18 18 14
PDF Downloads 10 10 6
Altmetric Badge
PubMed
Google Scholar