Chronic Ankle Instability Does Not Influence Tibiofemoral Contact Forces During Drop Landings Using a Musculoskeletal Model

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

The purpose of the study was to compare the tibiofemoral contact forces of participants with chronic ankle instability versus controls during landings using a computer-simulated musculoskeletal model. A total of 21 female participants with chronic ankle instability and 21 pair-matched controls performed a drop landing task on a tilted force plate. A 7-camera motion capture system and 2 force plates were used to test participants’ lower-extremity biomechanics. A musculoskeletal model was used to calculate the tibiofemoral contact forces (femur on tibia). No significant between-group differences were observed for the peak tibiofemoral contact forces (P = .25–.48) during the landing phase based on paired t tests. The group differences ranged from 0.05 to 0.58 body weight (BW). Most participants demonstrated a posterior force (peak,  ∼1.1 BW) for most duration of the landing phase and a medial force (peak, ∼0.9 BW) and large compressive force (peak, ∼10 BW) in the landing phase. The authors conclude that chronic ankle instability may not be related to the increased tibiofemoral contact forces or knee injury mechanisms during landings on the tilted surface.

Li is with the Department of Health and Human Performance, Texas State University, San Marcos, TX, USA. Wang is with the School of Kinesiology, Ball State University, Muncie, IN, USA. Simpson is with the Department of Kinesiology, University of Georgia, Athens, GA, USA.

Li (yumeng.li@txstate.edu) is corresponding author.
Journal of Applied Biomechanics
Article Sections
References
  • 1.

    Kobayashi TGamada K. Lateral ankle sprain and chronic ankle instability: a critical review. Foot Ankle Spec. 2014;7(4):298326. PubMed ID: 24962695 doi:

  • 2.

    Lin CFChen CYLin CW. Dynamic ankle control in athletes with ankle instability during sports maneuvers. Am J Sports Med. 2011;39(9):20072015. PubMed ID: 21622814 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Willems TWitvrouw EVerstuyft JVaes PDe Clercq D. Proprioception and muscle strength in subjects with a history of ankle sprains and chronic instability. J Athl Train. 2002;37(4):487493. PubMed ID: 12937572 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Denegar CRHertel JFonseca J. The effect of lateral ankle sprain on dorsiflexion range of motion, posterior talar glide, and joint laxity. J Orthop Sport Phys Ther. 2002;32(4):166173. http://articles.sirc.ca/search.cfm?id=S-821514

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Hoch MCStaton GSMcKeon JMMMattacola CGMcKeon PO. Dorsiflexion and dynamic postural control deficits are present in those with chronic ankle instability. J Sci Med Sport. 2012;15(6):574579. PubMed ID: 22575498

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Brown CNRosen ABKo J. Ankle ligament laxity and stiffness in chronic ankle instability. Foot ankle Int. 2015;36(5):565572. PubMed ID: 25511756 doi:

  • 7.

    Delahunt EMonaghan KCaulfield B. Changes in lower limb kinematics, kinetics, and muscle activity in subjects with functional instability of the ankle joint during a single leg drop jump. J Orthop Res. 2006;24(10):19912000. PubMed ID: 16894592 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Caulfield BMGarrett M. Functional instability of the ankle: differences in patterns of ankle and knee movement prior to and post landing in a single leg jump. Int J Sports Med. 2002;23(31):6468. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Gribble PARobinson RH. Alterations in knee kinematics and dynamic stability associated with chronic ankle instability. J Athl Train. 2009;44(4):350355. PubMed ID: 19593416 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Gribble PRobinson R. Differences in spatiotemporal landing variables during a dynamic stability task in subjects with CAI. Scand J Med Sci Sports. 2010;20(2002):110. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Herb CCGrossman KFeger MADonovan LHertel J. Lower extremity biomechanics during a drop-vertical jump in participants with or without chronic ankle instability. J Athl Train. 2018;53(4):364371. PubMed ID: 29667844 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Brown CNPadua DAMarshall SWGuskiewicz KM. Hip kinematics during a stop-jump task in patients with chronic ankle instability. J Athl Train. 2011;46(5):461467. PubMed ID: 22488131

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Söderman KAlfredson HPietilä TWerner S. Risk factors for leg injuries in female soccer players: a prospective investigation during one out-door season. Knee Surg Sports Traumatol Arthrosc. 2001;9(5):313321. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Kramer LCDenegar CRBuckley WEHertel J. Factors associated with anterior cruciate ligament injury: history in female athletes. J Sports Med Phys Fitness. 2007;47(4):446454. PubMed ID: 18091686

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Li YKo JWalker Met al. Does chronic ankle instability influence knee biomechanics of females during inverted surface landings? Int J Sports Med. 2018;39(13):10091017. PubMed ID: 30227456 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Li YKo JWalker MAet al. Does chronic ankle instability influence lower extremity muscle activation of females during landing? J Electromyogr Kinesiol. 2018;38:8187. PubMed ID: 29175719 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Terada MPietrosimone BGribble PA. Individuals with chronic ankle instability exhibit altered landing knee kinematics: potential link with the mechanism of loading for the anterior cruciate ligament. Clin Biomech. 2014;29(10):11251130. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Gerus PSartori MBesier TFet al. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. J Biomech. 2013;46(16):27782786. PubMed ID: 24074941 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Peng YZhang ZGao Yet al. Concurrent prediction of ground reaction forces and moments and tibiofemoral contact forces during walking using musculoskeletal modelling. Med Eng Phys. 2018;52:3140. PubMed ID: 29269224 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Cleather DJGoodwin JEBull AMJ. Hip and knee joint loading during vertical jumping and push jerking. Clin Biomech. 2013;28(1):98103. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Gribble PADelahunt EBleakley Cet al. Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the International Ankle Consortium. J Orthop Sports Phys Ther. 2013;43(8):585591. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Voskanian N. ACL Injury prevention in female athletes: review of the literature and practical considerations in implementing an ACL prevention program. Curr Rev Musculoskelet Med. 2013;6(2):158163. PubMed ID: 23413024 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Dufek JSBates BT. Biomechanical factors associated with injury during landing in jump sports. Sports Med. 1991;12(5):326337. doi:

  • 24.

    Kuni BMussler JKalkum ESchmitt HWolf SI. Effect of kinesiotaping, non-elastic taping and bracing on segmental foot kinematics during drop landing in healthy subjects and subjects with chronic ankle instability. Physiotherapy. 2016;102(3):287293. PubMed ID: 26422550 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Gutierrez GMKnight CASwanik CBet al. Examining neuromuscular control during landings on a supinating platform in persons with and without ankle instability. Am J Sports Med. 2012;40:193201. PubMed ID: 21917613 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Chen QWortley MBhaskaran DMilner CEZhang S. Is the inverted surface landing more suitable in evaluating ankle braces and ankle inversion perturbation? Clin J Sport Med. 2012;22:214220. PubMed ID: 22382431 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Kulas ASSchmitz RJSchultz SJWatson MAPerrin DH. Energy absorption as a predictor of leg impedance in highly trained females. J Appl Biomech. 2006;22(3):177185. PubMed ID: 17215549

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Bell ALBrand RAPedersen DR. Prediction of hip joint centre location from external landmarks. Hum Mov Sci. 1989;8(1):316. doi:

  • 29.

    Delp SLAnderson FCArnold ASet al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):19401950. PubMed ID: 18018689 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Liu Y-STsay T-SWang T-C. Muscles force and joints load simulation of bicycle riding using multibody models. Procedia Eng. 2011;13:8187. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Dao TTMarin FPouletaut PCharleux FAufaure PHo Ba Tho MC. Estimation of accuracy of patient-specific musculoskeletal modelling: case study on a post polio residual paralysis subject. Comput Methods Biomech Biomed Engin. 2012;15(7):745751. PubMed ID: 21491263 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Guess TMStylianou APKia M. Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait. J Biomech Eng. 2014;136(2):21032. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Kia MStylianou APGuess TM. Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials. Med Eng Phys. 2014;36(3):335344. PubMed ID: 24418154 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Stylianou APGuess TMKia M. Multibody muscle driven model of an instrumented prosthetic knee during squat and toe rise motions. J Biomech Eng. 2013;135(4):41008. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Shin CSChaudhari AMAndriacchi TP. The influence of deceleration forces on ACL strain during single-leg landing: a simulation study. J Biomech. 2007;40(5):11451152. PubMed ID: 16797556 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Yu BGarrett WE. Mechanisms of non-contact ACL injuries. Br J Sports Med. 2007;41(suppl 1):i47i51. doi:

  • 37.

    Nunley RWright DRenner JYu BGarrett WE. Gender comparison of patellar tendon tibial shaft angle with weight bearing. Res Sports Med. 2003;11(3):173185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Laughlin WAWeinhandl JTKernozek TWCobb SCKeenan KGO’connor KM. The effects of single-leg landing technique on ACL loading. J Biomech. 2011;44(10):18451851. PubMed ID: 21561623 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Kernozek TWRagan RJ. Estimation of anterior cruciate ligament tension from inverse dynamics data and electromyography in females during drop landing. Clin Biomech. 2008;23(10):12791286. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    D’Lima DDFregly BJPatil SSteklov NColwell Jr CW. Knee joint forces: prediction, measurement, and significance. Proc Inst Mech Eng H. 2012;226(2):95102. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Boden BPTorg JSKnowles SBHewett TE. Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. Am J Sports Med. 2009;37(2):252259. PubMed ID: 19182110 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Wall SJRose DMSutter EGBelkoff SMBoden BP. The role of axial compressive and quadriceps forces in noncontact anterior cruciate ligament injury: a cadaveric study. Am J Sports Med. 2012;40(3):568573. PubMed ID: 22174344 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Meyer EGHaut RC. Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression. J Biomech. 2008;41(16):33773383. PubMed ID: 19007932 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Weinhandl JTEarl-Boehm JEEbersole KTHuddleston WEArmstrong BSRO’Connor KM. Reduced hamstring strength increases anterior cruciate ligament loading during anticipated sidestep cutting. Clin Biomech. 2014;29(7):752759. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    D’Lima DDSteklov NPatil SColwell CW. The Mark Coventry Award: in vivo knee forces during recreation and exercise after knee arthroplasty. Clin Orthop Relat Res. 2008;466(11):26052611. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 132 131 119
Full Text Views 13 13 8
PDF Downloads 6 6 4
Altmetric Badge
PubMed
Google Scholar