The Influence of Hip Structure on Functional Valgus Collapse During a Single-Leg Forward Landing in Females

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Clinical femoral anteversion (Craig test) and hip range of motion (ROM) have been associated with valgus collapse, but their clinical usefulness in predicting biomechanics is unknown. Our purpose was to determine the individual and combined predictive power of femoral anteversion and passive hip ROM on 3-dimensional valgus collapse (hip internal rotation and adduction, knee rotation, and abduction) during a single-leg forward landing in females. Femoral anteversion and passive hip ROM were measured on 20 females (24.9 [4.1] y, 168.7 [8.0] cm, 63.8 [11.6] kg). Three-dimensional kinematics and kinetics were collected over 5 trials of the task. Each variable was averaged across trials. Backward, stepwise regressions determined the extent to which our independent variables were associated with valgus collapse. The combination of greater hip internal and external rotation ROM (partial r = .52 and .56) predicted greater peak knee internal rotation moment (R2 = .38, P = .02). Less hip internal rotation ROM (partial r = −.44) predicted greater peak knee abduction moments (R2 = .20, P = .05). Greater total hip ROM (internal and external rotation ROM) was not consistently associated with combined motions of valgus collapse but was indicative of isolated knee moments. Passive hip ROM is more associated with knee moments than is femoral anteversion as measured with Craig test.

Hogg is with the Department of Health & Human Performance, The University of Tennessee Chattanooga, Chattanooga, TN. Schmitz and Shultz are with the Department of Kinesiology, The University of North Carolina Greensboro, Greensboro, NC.

Hogg (jennifer-hogg@utc.edu) is corresponding author.
Journal of Applied Biomechanics
Article Sections
References
  • 1.

    Hewett TEMyer GDFord KRet al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492501. PubMed ID: 15722287 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Krosshaug TNakamae ABoden BPet al. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med. 2007;35(3):359367. PubMed ID: 17092928 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    O’Kane JWTencer ANeradilek MPolissar NSabado LSchiff MA. Is knee separation during a drop jump associated with lower extremity injury in adolescent female soccer players? Am J Sports Med. 2016;44(2):318323. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Boden BPTorg JSKnowles SBHewett TE. Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. Am J Sports Med. 2009;37(2):252259. PubMed ID: 19182110 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Ireland ML. Anterior cruciate ligament injury in female athletes: epidemiology. J Athl Train. 1999;34(2):150154. PubMed ID: 16558558

  • 6.

    Withrow TJHuston LJWojtys EMAshton-Miller JA. The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing. Clin Biomech. 2006;21:977983. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Shin CSChaudhari AMAndriacchi T. Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone. Med Sci Sport Exerc. 2011;43:14841491. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Hollman JHGalardi CMLin IHVoth BCWhitmarsh CL. Frontal and transverse plane hip kinematics and gluteus maximus recruitment correlate with frontal plane knee kinematics during single-leg squat tests in women. Clin Biomech. 2014;29(4):468474. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Munro AHerrington LComfort P. The relationship between 2-dimensional knee-valgus angles during single-leg squat, single-leg-land, and drop-jump screening tests. J Sport Rehabil. 2017;26(1):7277. PubMed ID: 28095108 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Nguyen A-DShultz SJSchmitz RJLuecht RMPerrin DH. A preliminary multifactorial approach describing the relationships among lower extremity alignment, hip muscle activation, and lower extremity joint excursion. J Athl Train. 2011;46(3):246256. PubMed ID: 21669093 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Nguyen ACone JStevens LSchmitz RShultz S. Influence of hip internal rotation range of motion on hip and knee motions during landing. J Athl Train. 2009;44(3):S68.

    • Search Google Scholar
    • Export Citation
  • 12.

    Howard JSFazio MACarl GUhl TLJacobs CA. Structure, sex, and strength and knee and hip kinematics during landing. J Athl Train. 2011;46(4):376385. PubMed ID: 21944069 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Nguyen A-DShultz SJSchmitz RJ. Landing biomechanics in participants with different static lower extremity alignment profiles. J Athl Train. 2015;50(5):498507. PubMed ID: 25658815 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Chadayammuri VGarabekyan TBedi Aet al. Passive hip range of motion predicts femoral torsion and acetabular version. J Bone Joint Surg Am. 2016;98(2):127134. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Kraeutler MJChadayammuri VGarabekyan TMei-Dan O. Femoral version abnormalities significantly outweigh effect of cam impingement on hip internal rotation. J Bone Joint Surg Am. 2018;100(3):205210. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Magee D. Orthopedic Physical Assessment. Philadelphia, PA: W.B. Saunders; 1997.

  • 17.

    Ruwe PAGage JROzonoff MBDeLuca PA. Clinical determination of femoral anteversion. A comparison with established techniques. J Bone Joint Surg Am. 1992;74(6):820830.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Medina McKeon JMHertel J. Sex differences and representative values for 6 lower extremity alignment measures. J Athl Train. 2009;44(3):249255. PubMed ID: 19478840 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Hogg JSchmitz RNguyen A-DShultz SJ. Passive hip range-of-motion values across sex and sport. J Athl Train. 2018;53(6):560567. PubMed ID: 29897784 doi:

  • 20.

    Shultz SJNguyen A-D. Bilateral asymmetries in clinical measures of lower-extremity anatomic characteristics. Clin J Sport Med. 2007;17(5):357361. PubMed ID: 17873547 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bell ALBrand RAPedersen R. Prediction of hip joint centre location from external landmarks. Hum Mov Sci. 1989;8:316. doi:

  • 22.

    Jacobs CAUhl TLMattacola CGShapiro RRayens WS. Hip abductor function and lower extremity landing kinematics: sex differences. J Athl Train. 2007;42(1):7683. PubMed ID: 17597947

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Markolf KLBurchfield DMShapiro MMShepard MFFinerman GAMSlauterbeck JL. Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res. 1995;13(3):930935. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Oh YKLipps DBAshton-Miller JAWojtys EM. What strains the anterior cruciate ligament during a pivot landing? Am J Sports Med. 2012;40(3):574583. PubMed ID: 22223717 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Kiapour AMKiapour AGoel VKet al. Uni-directional coupling between tibiofemoral frontal and axial plane rotation supports valgus collapse mechanism of ACL injury. J Biomech. 2015;48(10):17451751. PubMed ID: 26070647 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Oh YAshton-Miller JWojtys E. Comparison of the effects of valgus loading and internal axial tibial torque on ACL strain during a simulated jump landing. Br J Sports Med. 2011;45:327. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Vandenberg CCrawford EAEnselman ESRobbins CBWojtys EMBedi A. Restricted hip rotation is correlated with an increased risk for anterior cruciate ligament injury. Arthroscopy. 2017;33(2):317325.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Tainaka KTakizawa TKobayashi HUmimura M. limited hip rotation and non-contact anterior cruciate ligament injury: a case–control study. Knee. 2014;21(1):8690. PubMed ID: 23953661 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Fan LCopple TJTritsch AJShultz SJ. Clinical and instrumented measurements of hip laxity and their associations with knee laxity and general joint laxity. J Athl Train. 2014;49(5):590598. PubMed ID: 25098747 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Uhorchak JMScoville CRWilliams GNArciero RASt Pierre PTaylor DC.Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med. 2003;31(6):831842. PubMed ID: 14623646 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Cesar GMTomasevicz CLBurnfield JM. Frontal plane comparison between drop jump and vertical jump: implications for the assessment of ACL risk of injury. Sports Biomech. 2016;15(4):440449.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Cronin BJohnson STChang EPollard CDNorcross MF. Greater hip extension but not hip abduction explosive strength is associated with lesser hip adduction and knee valgus motion during a single-leg jump-cut. Orthop J Sports Med. 2016;4(4):232596711663957. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Yang CYao WGarrett WEet al. Effects of an intervention program on lower extremity biomechanics in stop-jump and side-cutting tasks. Am J Sports Med. 2018;46(12):30143022. PubMed ID: 30148646 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Havens KLSigward SM. Cutting mechanics: relation to performance and anterior cruciate ligament injury risk. Med Sci Sports Exerc. 2015;47(4):818824. PubMed ID: 25102291 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Kozic SGulan GMatovinovic DNemec BSestan BRavlic-Gulan J. Femoral anteversion related to side differences in hip rotation. Passive rotation in 1,140 children aged 8–9 years. Acta Orthop Scand. 1997;68:533536. PubMed ID: 9462351 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    van Arkel RJAmis AAJeffers JRT. The envelope of passive motion allowed by the capsular ligaments of the hip. J Biomech. 2015;48(14):38033809. PubMed ID: 26429769 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Fukuda YWoo SL-YLoh JCet al. A quantitative analysis of valgus torque on the ACL: a human cadaveric study. J Orthop Res. 2003;21(6):11071112. PubMed ID: 14554225 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 210 210 133
Full Text Views 13 13 8
PDF Downloads 3 3 3
Altmetric Badge
PubMed
Google Scholar