The Efficacy of Simultaneously Training 2 Motion Targets During a Squat Using Auditory Feedback

in Journal of Applied Biomechanics
View More View Less
  • 1 Mayo Clinic
  • 2 The University of Texas at El Paso
  • 3 Oklahoma State University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Auditory feedback is a simple, low-cost training solution that can be used in rehabilitation, motor learning, and performance development. The use has been limited to the instruction of a single kinematic or kinetic target. The goal of this study was to determine if auditory feedback could be used to simultaneously train 2 lower-extremity parameters to perform a bodyweight back squat. A total of 42 healthy, young, recreationally active males participated in a 4-week training program to improve squat biomechanics. The Trained group (n = 22) received 4 weeks of auditory feedback. Feedback focused on knee flexion angle and center of pressure under the foot at maximum squat depth. The Control group (n = 20) performed squats without feedback. Subjects were tested pre, post, and 1 week after training. The Trained group achieved average target knee flexion angle within 1.73 (1.31) deg (P < .001) after training and 5.36 (3.29) deg (P < .01) at retention. While achieving target knee flexion angle, the Trained group maintained target center of pressure (P < .001). The Control group improved knee range of motion, but were not able to achieve both parameter targets at maximum squat depth (P < .90). Results from this study demonstrate that auditory feedback is an effective way to train 2 independent biomechanical targets simultaneously.

Hale is with the Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA. Dorgo is with the Department of Kinesiology, The University of Texas at El Paso, El Paso, TX, USA. Gonzalez is with the College of Engineering, Architecture, and Technology, The University of Texas at El Paso, El Paso, TX, USA. Hausselle is with the College of Engineering, Oklahoma State University, Stillwater, OK, USA.

Hale (Hale.Rena@mayo.edu) is corresponding author.
  • 1.

    Sigrist R, Rauter G, Riener R, Wolf P. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychon Bull Rev. 2013;20(1):2153. PubMed ID: 23132605 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Sigrist R, Rauter G, Riener R, Wolf P. Terminal feedback outperforms concurrent visual, auditory, and haptic feedback in learning a complex rowing-type task. J Mot Behav. 2013;45(6):455472. PubMed ID: 24006910 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Marchal-Crespo L, van Raai M, Rauter G, Wolf P, Riener R. The effect of haptic guidance and visual feedback on learning a complex tennis task. Exp Brain Res. 2013;231(3):277291. PubMed ID: 24013789 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Boyd J, Godbout A. Corrective sonic feedback for speed skating: A case study. Georgia Institute of Technology. 2010.

    • Export Citation
  • 5.

    Zanotto D, Rosati G, Spagnol S, Stegall P, Agrawal SK. Effects of complementary auditory feedback in robot-assisted lower extremity motor adaptation. IEEE Trans Neural Syst Rehabil Eng. 2013;21(5):775786. PubMed ID: 23529102 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Baudry L, Leroy D, Thouvarecq R, Chollet D. Auditory concurrent feedback benefits on the circle performed in gymnastics. J Sports Sci. 2006;24(2):149156. PubMed ID: 16368624 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Riskowski JL. Gait and neuromuscular adaptations after using a feedback-based gait monitoring knee brace. Gait Posture. 2010;32(2):242247. PubMed ID: 20558068 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Petrofsky J. The use of electromyogram biofeedback to reduce Trendelenburg gait. Eur J Appl Physiol. 2001;85(5):491495. PubMed ID: 11606020 doi:

  • 9.

    Schaffert N, Mattes K, Effenberg AO. A sound design for the purposes of movement optimisation in elite sport (using the example of rowing).  Georgia Institute of Technology. 2009.

    • Export Citation
  • 10.

    Chollet D, Madani M, Micallef J. Effects of two types of biomechanical bio-feedback on crawl performance. Biomechanics and Medicine in Swimming, Swimming Science VI. 1992;48:53.

    • Search Google Scholar
    • Export Citation
  • 11.

    Yamamoto G, Shiraki K, Takahata M, Sakane Y, Takebayashi Y. Multimodal knowledge for designing new sound environments. Paper presented at: The International Conference on Human Computer Interaction with Mobile Devices and Services; 2004.

    • Export Citation
  • 12.

    Konttinen N, Mononen K, Viitasalo J, Mets T. The effects of augmented auditory feedback on psychomotor skill learning in precision shooting. J Sport Exerc Psychol. 2004;26(2):306316. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Kernodle MW, Carlton LG. Information feedback and the learning of multiple-degree-of-freedom activities. J Mot Behav. 1992;24(2):187195. PubMed ID: 14977618 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Blandin Y, Toussaint L, Shea CH. Specificity of practice: interaction between concurrent sensory information and terminal feedback. J Exp Psychol Learn Mem Cogn. 2008;34(4):994. PubMed ID: 18605884

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Herman DC, Oñate JA, Weinhold PS, et al. The effects of feedback with and without strength training on lower extremity biomechanics. Am J Sports Med. 2009;37(7):13011308. PubMed ID: 19299530 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Baram Y, Miller A. Auditory feedback control for improvement of gait in patients with Multiple Sclerosis. J Neurol Sci. 2007;254(1–2):9094. PubMed ID: 17316692 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Barrios JA, Crossley KM, Davis IS. Gait retraining to reduce the knee adduction moment through real-time visual feedback of dynamic knee alignment. J Biomech. 2010;43(11):22082213. PubMed ID: 20452595 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hinder MR, Riek S, Tresilian JR, de Rugy A, Carson RG. Real-time error detection but not error correction drives automatic visuomotor adaptation. Exp Brain Res. 2010;201(2):191207. PubMed ID: 19830412 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Cason CL, Trowbridge C, Baxley SM, Ricard MD. A counterbalanced cross-over study of the effects of visual, auditory and no feedback on performance measures in a simulated cardiopulmonary resuscitation. BMC Nurs. 2011;10(1):15. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Myer GD, Kushner AM, Brent JL, et al. The back squat: A proposed assessment of functional deficits and technical factors that limit performance. Strength Cond J. 2014;36(6):4. PubMed ID: 25506270 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Thompson PD, Arena R, Riebe D, Pescatello LS. ACSM’s new preparticipation health screening recommendations from ACSM’s guidelines for exercise testing and prescription. Curr Sports Med Rep. 2013;12(4):215217. PubMed ID: 23851406 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hale R. Validation of an Error Sonification Auditory Feedback Training Program on Proper Sagittal Plane Squat Technique. El Paso, TX: The University of Texas at El Paso; 2016.

    • Search Google Scholar
    • Export Citation
  • 23.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492501. PubMed ID: 15722287 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Bates NA, Ford KR, Myer GD, Hewett TE. Kinetic and kinematic differences between first and second landings of a drop vertical jump task: implications for injury risk assessments. Clin Biomech. 2013;28(4):459466. PubMed ID: 23562293 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Lauber B, Keller M. Improving motor performance: selected aspects of augmented feedback in exercise and health. Eur J Sport Sci. 2014;14(1):3643. PubMed ID: 24533493 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Ranganathan R, Newell KM. Influence of augmented feedback on coordination strategies. J Mot Behav. 2009;41(4):317330. PubMed ID: 19508958 doi:

  • 27.

    Swinnen SP, Lee TD, Verschueren S, Serrien DJ, Bogaerds H. Interlimb coordination: learning and transfer under different feedback conditions. Hum Mov Sci. 1997;16(6):749785. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Ronsse R, Puttemans V, Coxon JP, et al. Motor learning with augmented feedback: modality-dependent behavioral and neural consequences. Cereb Cortex. 2010;21(6):12831294. PubMed ID: 21030486 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Rosati G, Rodà A, Avanzini F, Masiero S. On the role of auditory feedback in robot-assisted movement training after stroke: review of the literature. Comput Intell Neurosci. 2013;2013:586138. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Sülzenbrück S, Heuer H. Type of visual feedback during practice influences the precision of the acquired internal model of a complex visuo-motor transformation. Ergonomics. 2011;54(1):3446. PubMed ID: 21181587 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Crowell HP, Milner CE, Hamill J, Davis IS. Reducing impact loading during running with the use of real-time visual feedback. J Orthop Sports Phys Ther. 2010;40(4):206213. PubMed ID: 20357417 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Schmidt RA, Wulf G. Continuous concurrent feedback degrades skill learning: implications for training and simulation. Hum Factors. 1997;39(4):509525. PubMed ID: 9473972 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Secoli R, Milot M-H, Rosati G, Reinkensmeyer DJ. Effect of visual distraction and auditory feedback on patient effort during robot-assisted movement training after stroke. J NeuroEng Rehabil. 2011;8(1):21. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Piriyaprasarth P, Morris ME, Winter A, Bialocerkowski AE. The reliability of knee joint position testing using electrogoniometry. BMC Musculoskelet Disord. 2008;9(1):6. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Smith TO, Davies L, Hing CB. A systematic review to determine the reliability of knee joint position sense assessment measures. Knee. 2013;20(3):162169. PubMed ID: 22819143 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 133 133 60
Full Text Views 9 9 1
PDF Downloads 4 4 1