Could Relative Movement Between the Adductor Muscles and the Skin Invalidate Surface Electromyography Measurement?

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

The superficial hip adductor muscles are situated in close proximity to each other. Therefore, relative movement between the overlying skin and the muscle belly could lead to a shift in the position of surface electromyography (EMG) electrodes and contamination of EMG signals with activity from neighboring muscles. The aim of this study was to explore whether hip movements or isometric contraction could lead to relative movement between the overlying skin and 3 adductor muscles: adductor magnus, adductor longus, and adductor gracilis. The authors also sought to investigate isometric torque–EMG relationships for the 3 adductor muscles. Ultrasound measurement showed that EMG electrodes maintained a position which was at least 5 mm within the muscle boundary across a range of hip flexion–extension angles and across different contraction levels. The authors also observed a linear relationship between torque and EMG amplitude. This is the first study to use ultrasound to track the relative motion between skin and muscle and provides new insight into electrode positioning. The findings provide confidence that ultrasound-based positioning of EMG electrodes can be used to derive meaningful information on output from the adductor muscles and constitute a step toward recognized guidelines for surface EMG measurement of the adductors.

The authors are with the Centre for Health Sciences Research, University of Salford, Salford, Manchester, United Kingdom.

Preece (s.preece@salford.ac.uk) is corresponding author.
  • 1.

    Ito J. Morphological analysis of the human lower extremity based on the relative muscle weight. Okajimas Folia Anatomica Japonica. 1996;73(5):247251. PubMed ID: 9059058 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Arnold EM, Ward SR, Lieber RL, Delp SL. A model of the lower limb for analysis of human movement. Ann Biomed Eng. 2010;38(2):269279. PubMed ID: 19957039 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Bogey RA, Barnes LA. An EMG-to-Force Processing approach for estimating in vivo hip muscle forces in normal human walking. IEEE Trans Neural Syst Rehabil Eng. 2017;25(8):11721179. PubMed ID: 28113401 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hu H, Meijer OG, van Dieen JH, et al. Muscle activity during the active straight leg raise (ASLR), and the effects of a pelvic belt on the ASLR and on treadmill walking. J Biomech. 2010;43(3):532539. PubMed ID: 19883914 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Lee SJ, Hidler J. Biomechanics of overground vs treadmill walking in healthy individuals. J Appl Physiol. 2008;104(3):747755. PubMed ID: 18048582 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Chimera NJ, Swanik KA, Swanik CB, Straub SJ. Effects of plyometric training on muscle-activation strategies and performance in female athletes. J Athl Train. 2004;39(1):2431. PubMed ID: 15085208

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hunter I, Seeley MK, Hopkins JT, Carr C, Franson JJ. EMG activity during positive-pressure treadmill running. J Electromyogr Kinesiol. 2014;24(3):348352. PubMed ID: 24613660 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Kaneda K, Sato D, Wakabayashi H, Nomura T. EMG activity of hip and trunk muscles during deep-water running. J Electromyogr Kinesiol. 2009;19(6):10641070. PubMed ID: 19097917 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Montgomery WH 3rd, Pink M, Perry J. Electromyographic analysis of hip and knee musculature during running. Am J Sports Med. 1994;22(2):272278. PubMed ID: 8198199 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Chang R, Turcotte R, Pearsall D. Hip adductor muscle function in forward skating. Sports Biomech. 2009;8(3):212222. PubMed ID: 19891199 doi:

  • 11.

    Serner A, Jakobsen MD, Andersen LL, Holmich P, Sundstrup E, Thorborg K. EMG evaluation of hip adduction exercises for soccer players: implications for exercise selection in prevention and treatment of groin injuries. Br J Sports Med. 2014;48(14):11081114. PubMed ID: 23511698 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361374. PubMed ID: 11018445 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Watanabe K, Katayama K, Ishida K, Akima H. Electromyographic analysis of hip adductor muscles during incremental fatiguing pedaling exercise. Eur J Appl Physiol. 2009;106(6):815825. PubMed ID: 19466446 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Enoka RM. Neuromechanics of human movement. 5th ed. Champaign, IL: Human Kinetics; 2015.

  • 15.

    Thoirs K, English C. Ultrasound measures of muscle thickness: intra-examiner reliability and influence of body position. Clin Physiol Funct Imaging. 2009;29(6):440446. PubMed ID: 19747211 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Alegre L, Ferri-Morales A, Rodriguez-Casares R, Aguado X. Effects of isometric training on the knee extensor moment–angle relationship and vastus lateralis muscle architecture. Eur J Appl Physiol. 2014;114(11):24372446. PubMed ID: 25099962 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Konrad A, Tilp M. Effects of ballistic stretching training on the properties of human muscle and tendon structures. J Appl Physiol. 2014;117(1):2935. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Koppenhaver SL, Hebert JJ, Parent EC, Fritz JM. Rehabilitative ultrasound imaging is a valid measure of trunk muscle size and activation during most isometric sub-maximal contractions: a systematic review. Aust J Physiother. 2009;55(3):153169. PubMed ID: 19681737 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Lovell GA, Blanch PD, Barnes CJ. EMG of the hip adductor muscles in six clinical examination tests. Phys Ther Sport. 2012;13(3):134140. PubMed ID: 22814446 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Bilodeau M, Arsenault A, Gravel D, Bourbonnais D. The influence of an increase in the level of force on the EMG power spectrum of elbow extensors. Eur J Appl Physiol Occup Physiol. 1990;61(5):461466. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Gerdle B, Karlsson S, Day S, Djupsjöbacka M. Acquisition, processing and analysis of the surface electromyogram. In: Windhorst U, Johansson H, ed. Modern Techniques in Neuroscience Research. Berlin: Springer; 1999:705755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Barbero M, Merletti R, Rainoldi A. Atlas of Muscle Innervation Zones: Understanding Surface Electromyography and Its Applications. Milan: Springer; 2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Novacheck TF. The biomechanics of running. Gait Posture. 1998;7(1):7795. PubMed ID: 10200378 doi:

  • 24.

    Preece SJ, Mason D, Bramah C. The coordinated movement of the spine and pelvis during running. Hum Mov Sci. 2016(45):110118.

  • 25.

    Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity kinematics during level walking. J Orthop Res. 1990;8(3):383392. PubMed ID: 2324857 doi:

  • 26.

    Brent JL, Myer GD, Ford KR, Paterno MV, Hewett TE. The effect of sex and age on isokinetic hip-abduction torques. J Sport Rehabil. 2013;22(1):4146. PubMed ID: 22715125 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Abadie A, Athey S, Imbens GW, Wooldridge J. When should you adjust standard errors for clustering? National Bureau of Economic Research Working Paper Series. 2017; No. 24003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Akbarshahi M, Schache AG, Fernandez JW, Baker R, Banks S, Pandy MG. Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity. J Biomech. 2010;43(7):12921301. PubMed ID: 20206357 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Benoit DL, Ramsey DK, Lamontagne M, Xu L, Wretenberg P, Renström P. Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture. 2006;24(2):152164. PubMed ID: 16260140 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Reinschmidt C, van Den Bogert AJ, Nigg BM, Lundberg A, Murphy N. Effect of skin movement on the analysis of skeletal knee joint motion during running. J Biomech. 1997;30(7):729732. PubMed ID: 9239553 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Delaney S, Worsley P, Warner M, Taylor M, Stokes M. Assessing contractile ability of the quadriceps muscle using ultrasound imaging. Muscle Nerve. 2010;42(4):530538. PubMed ID: 20665511 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Perry J, Bekey GA. EMG-force relationships in skeletal muscle. Crit Rev Biomed Eng. 1981;7(1):122. PubMed ID: 7042199

  • 33.

    Lawrence JH, De Luca CJ. Myoelectric signal versus force relationship in different human muscles. J Appl Physiol Respir Environ Exerc Physiol. 1983;54(6):16531659. PubMed ID: 6874489

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Woods JJ, Bigland-Ritchie B. Linear and non-linear surface EMG/force relationships in human muscles. An anatomical/functional argument for the existence of both. Am J Phys Med Rehabil. 1983;62(6):287299.

    • Search Google Scholar
    • Export Citation
  • 35.

    Alkner BA, Tesch PA, Berg HE. Quadriceps EMG/force relationship in knee extension and leg press. Med Sci Sports Exerc. 2000;32(2):459463. PubMed ID: 10694132 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Bilodeau M, Schindler-Ivens S, Williams DM, Chandran R, Sharma SS. EMG frequency content changes with increasing force and during fatigue in the quadriceps femoris muscle of men and women. J Electromyogr Kinesiol. 2003;13(1):8392. PubMed ID: 12488090 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Merletti R, Farina D. Surface Electromyography: Physiology, Engineering, and Applications. New Jersey, NJ: IEEE Press Wiley; 2016.

  • 38.

    Botter A, Beltrandi M, Cerone GL, Gazzoni M, Vieira TMM. Development and testing of acoustically-matched hydrogel-based electrodes for simultaneous EMG-ultrasound detection. Med Eng Phys. 2019;64:7479. PubMed ID: 30554980 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 326 326 130
Full Text Views 8 8 1
PDF Downloads 9 9 1