Contact Pressures Between the Rearfoot and a Novel Offloading Insole: Results From a Finite Element Analysis Study

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Pittsburgh
  • 2 University of Pittsburgh Medical Center
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Pressure offloading is critical to diabetic foot ulcer healing and prevention. A novel product has been proposed to achieve this offloading with an insole that can be easily modified for each user. This insole consists of pressurized bubbles that can be selectively perforated and depressurized to redistribute weight to the nonulcer region of the foot. However, the effect of the insole design parameters, for example, bubble height and stiffness, on offloading effectiveness is unknown. To this end, a 3-dimensional finite element model was developed to simulate contact between the rearfoot and insole. The geometry of the calcaneus bone and soft tissue was based on the medical images of an average male patient, and material properties and loading conditions based on the values reported in the literature were used. The model predicts that increasing bubble height and stiffness leads to a more effectively offloaded region. However, the model also predicts that increasing stiffness leads to increasing contact pressures on the surrounding soft tissue. Thus, a combination of insole design parameters was determined, which completely offloads the desired region, while simultaneously reducing the contact pressure on the surrounding soft tissue. This design is expected to aid in diabetic foot ulcer healing and prevention.

Strayer is with the Department of Mechanical Engineering; Moghaddam and Beschorner are with the Department of Bioengineering; University of Pittsburgh, Pittsburgh, PA, USA. B. Gusenoff and J. Gusenoff are with the Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.

Beschorner (beschorn@pitt.edu) is corresponding author.
  • 1.

    Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):414. PubMed ID: 19896746 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Margolis DJ, Malay DS, Hoffstad OJ, et al. Prevalence of diabetes, diabetic foot ulcer, and lower extremity amputation among Medicare beneficiaries, 2006 to 2008. In Data Points Publication Series [Internet]. 2011, Feb 11. Agency for Healthcare Research and Quality (US). AHRQ Publication No. 10(11)-EHC009-EF.

    • Export Citation
  • 3.

    Yazdanpanah L, Nasiri M, Adarvishi S. Literature review on the management of diabetic foot ulcer. World J Diabetes. 2015;6(1):37. PubMed ID: 25685277 doi:

  • 4.

    Boulton AJ, Armstrong DG, Kirsner RS, et al. Diagnosis and management of diabetic foot complications. American Diabetes Association. 2018.

    • Search Google Scholar
    • Export Citation
  • 5.

    Bus SA. The role of pressure offloading on diabetic foot ulcer healing and prevention of recurrence. Plast Reconstr Surg. 2016;138(3S):179S187S. doi:

  • 6.

    Bus SA, Van Deursen R, Armstrong D, et al. Footwear and offloading interventions to prevent and heal foot ulcers and reduce plantar pressure in patients with diabetes: a systematic review. Diabetes Metab Res Rev. 2016;32(Suppl. 1):99118. PubMed ID: 26342178 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Cavanagh PR, Bus SA. Off-loading the diabetic foot for ulcer prevention and healing. Plast Reconstr Surg. 2011;127(Suppl. 1):248S256S. PubMed ID: 21200298 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Fleischli JG, Lavery LA, Vela SA, Ashry H, Lavery DC. 1997 William J. Stickel Bronze Award. Comparison of strategies for reducing pressure at the site of neuropathic ulcers. J Am Podiatr Med Assoc. 1997;87(10):466472. PubMed ID: 9351316 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Fife CE, Carter MJ, Walker D. Why is it so hard to do the right thing in wound care? Wound Repair Regen. 2010;18(2):154158. PubMed ID: 20163568 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Bus SA, Ulbrecht JS, Cavanagh PR. Pressure relief and load redistribution by custom-made insoles in diabetic patients with neuropathy and foot deformity. Clin Biomech. 2004;19(6):629638. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Cheung JT-M, Zhang M. A 3-dimensional finite element model of the human foot and ankle for insole design. Arch Phys Med Rehabil. 2005;86(2):353358. PubMed ID: 15706568 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Cheung JT-M, Zhang M, Leung AK-L, Fan Y-B. Three-dimensional finite element analysis of the foot during standing—a material sensitivity study. J Biomech. 2005;38(5):10451054. PubMed ID: 15797586 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Chen W-M, Lee S-J, Lee PVS. Plantar pressure relief under the metatarsal heads–therapeutic insole design using three-dimensional finite element model of the foot. J Biomech. 2015;48(4):659665. PubMed ID: 25620685 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Chen W-P, Ju C-W, Tang F-T. Effects of total contact insoles on the plantar stress redistribution: a finite element analysis. Clin Biomech. 2003;18(6):S17S24. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Gefen A. Plantar soft tissue loading under the medial metatarsals in the standing diabetic foot. Med Eng Phys. 2003;25(6):491499. PubMed ID: 12787987 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Gefen A, Megido-Ravid M, Itzchak Y, Arcan M. Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications. J Biomech Eng. 2000;122(6):630639. PubMed ID: 11192385 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Lemmon D, Shiang T-Y, Hashmi A, Ulbrecht JS, Cavanagh PR. The effect of insoles in therapeutic footwear—a finite element approach. J Biomech. 1997;30(6):615620. PubMed ID: 9165395 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Nakamura S, Crowninshield R, Cooper R. An analysis of soft tissue loading in the foot--a preliminary report. Bull Prosthet Res. 1981;10:2734. PubMed ID: 7332829

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Goske S, Erdemir A, Petre M, Budhabhatti S, Cavanagh PR. Reduction of plantar heel pressures: Insole design using finite element analysis. J Biomech. 2006;39(13):23632370. PubMed ID: 16197952 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Oyibo S, Jude E, Tarawneh I, et al. The effects of ulcer size and site, patient’s age, sex and type and duration of diabetes on the outcome of diabetic foot ulcers. Diabet Med. 2001;18(2):133138. PubMed ID: 11251677 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Zimny S, Schatz H, Pfohl M. The effects of ulcer size on the wound radius reductions and healing times in neuropathic diabetic foot ulcers. Exp Clin Endocrinol Diabetes. 2004;112(04):191194. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Beckert S, Witte M, Wicke C, Königsrainer A, Coerper S. A new wound-based severity score for diabetic foot ulcers: a prospective analysis of 1,000 patients. Diabetes Care. 2006;29(5):988992. PubMed ID: 16644625 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Cowley MS, Boyko EJ, Shofer JB, Ahroni JH, Ledoux WR. Foot ulcer risk and location in relation to prospective clinical assessment of foot shape and mobility among persons with diabetes. Diabetes Res Clin Pract. 2008;82(2):226232. PubMed ID: 18829126 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Bhashyam GR. ANSYS mechanical, a powerful nonlinear simulation tool. Ansys, Inc. 2002;1(1):39.

  • 25.

    Gefen A, Megido-Ravid M, Azariah M, Itzchak Y, Arcan M. Integration of plantar soft tissue stiffness measurements in routine MRI of the diabetic foot. Clin Biomech. 2001;16(10):921925. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Klaesner JW, Hastings MK, Zou D, Lewis C, Mueller MJ. Plantar tissue stiffness in patients with diabetes mellitus and peripheral neuropathy. Arch Phys Med Rehabil. 2002;83(12):17961801. PubMed ID: 12474190 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Zhang M, Mak A. In vivo friction properties of human skin. Prosthet Orthot Int. 1999;23(2):135141. PubMed ID: 10493141 doi:

  • 28.

    Mirhassani Moghaddam SR. Computational Models for Predicting Shoe Friction and Wear. [Doctoral Dissertation]. Pittsburgh, PA: University of Pittsburgh; 2018.

    • Search Google Scholar
    • Export Citation
  • 29.

    Ansys Inc. ANSYS Meshing User’s Guide. Canonsburg, PA: Ansys, Inc.; 2010; 15317:724746.

  • 30.

    ASME Standard V&V 40. Assessing Credibility of Computational Modeling Through Verification and Validation: Application to Medical Devices. New York, NY; 2018.

    • Search Google Scholar
    • Export Citation
  • 31.

    Wu L. Nonlinear finite element analysis for musculoskeletal biomechanics of medial and lateral plantar longitudinal arch of virtual Chinese human after plantar ligamentous structure failures. Clin Biomech. 2007;22(2):221229. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Wu L, Zhong S, Zheng R, et al. Clinical significance of musculoskeletal finite element model of the second and the fifth foot ray with metatarsal cavities and calcaneal sinus. Surg Radiol Anat. 2007;29(7):561567. PubMed ID: 17619812 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Simkin A. Structural Analysis of the Human Foot in Standing Posture. [Dissertation]. Tel Aviv, Israel: Tel Aviv University; 1982.

  • 34.

    Johnson KL, Johnson KL. Contact Mechanics. Cambridge, United Kingdom: Cambridge University Press; 1987.

All Time Past Year Past 30 Days
Abstract Views 274 274 78
Full Text Views 6 6 1
PDF Downloads 5 5 1