Examination of the Feasibility of a 2-Dimensional Portable Assessment of Knee Joint Stability: A Pilot Study

in Journal of Applied Biomechanics
View More View Less
  • 1 Atrium Health Musculoskeletal Institute
  • 2 Duke University
  • 3 Ohio State University Wexner Medical Center
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Rupture of the anterior cruciate ligament (ACL) remains extremely common, with over 250,000 injuries annually. Currently, clinical tests have poor utility to accurately screen for ACL injury risk in athletes. In this study, the position of a knee marker was tracked in 2-dimensional planes to predict biomechanical variables associated with ACL injury risk. Three-dimensional kinematics and ground reaction forces were collected during bilateral, single-leg stop-jump tasks for 44 healthy male military personnel. Knee marker position data were extracted to construct 2-dimensional 95% prediction ellipses in each anatomical plane. Knee marker variables included: ellipse areas, major/minor axes lengths, orientation of ellipse axes, absolute ranges of knee position, and medial knee collapse. These variables were then used as predictor variables in stepwise multiple linear regression analyses for 7 biomechanical variables associated with ACL injury risk. Knee flexion excursion, normalized peak vertical ground reaction forces, and knee flexion angle at initial contact were the response variables that generated the highest adjusted R2 values: .71, .37, and .31, respectively. The results of this study provide initial support for the hypothesis that tracking a single marker during 2-dimensional analysis can accurately reflect the information gathered from 3-dimensional motion analysis during a task assessing knee joint stability.

Zerega and Sell are with Atrium Health Musculoskeletal Institute, Charlotte, NC, USA. Killelea, and Faherty are with the Michael W. Krzyzewski Human Performance Lab, Department of Orthopaedic Surgery, Duke University, Durham, NC, USA. Losciale is with the Jameson Crane Sports Medicine Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.

Zerega (ryanzerega3@gmail.com) is corresponding author.
  • 1.

    Hootman JM, Dick R, Agel J. Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J Athl Train. 2007;42(2):311319. PubMed ID: 17710181

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med. 2016;50(13):804808. PubMed ID: 27162233 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Prodromos CC, Han Y, Rogowski J, Joyce B, Shi K. A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen. Arthroscopy. 2007;23(12):13201325. PubMed ID: 18063176 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Griffin LY, Albohm MJ, Arendt EA, et al. Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am J Sports Med. 2006;34(9):15121532. PubMed ID: 16905673 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Nagelli CV, Hewett TE. Should return to sport be delayed until 2 years after anterior cruciate ligament reconstruction? Biological and functional considerations. Sports Med. 2017;47(2):221232. PubMed ID: 27402457 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med. 2016;44(7):18611876. PubMed ID: 26772611 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Neuman P, Englund M, Kostogiannis I, Friden T, Roos H, Dahlberg LE. Prevalence of tibiofemoral osteoarthritis 15 years after nonoperative treatment of anterior cruciate ligament injury: a prospective cohort study. Am J Sports Med. 2008;36(9):17171725. PubMed ID: 18483197 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Oiestad BE, Holm I, Engebretsen L, Risberg MA. The association between radiographic knee osteoarthritis and knee symptoms, function and quality of life 10-15 years after anterior cruciate ligament reconstruction. Br J Sports Med. 2011;45(7):583588. PubMed ID: 20647299 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Songer TJ, LaPorte RE. Disabilities due to injury in the military. Am J Prev Med. 2000;18(1):3340. PubMed ID: 10736539 doi:

  • 10.

    Zaffagnini S, Grassi A, Serra M, Marcacci M. Return to sport after ACL reconstruction: how, when and why? A narrative review of current evidence. Joints. 2015;3(1):2530. PubMed ID: 26151036

    • Search Google Scholar
    • Export Citation
  • 11.

    Losciale JM, Zdeb RM, Ledbetter L, Reiman MP, Sell TC. The association between passing return-to-sport criteria and second anterior cruciate ligament injury risk: a systematic review with meta-analysis. J Orthop Sports Phys Ther. 2019;49(2):4354. PubMed ID: 30501385 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Dingenen B, Gokeler A. Optimization of the return-to-sport paradigm after anterior cruciate ligament reconstruction: a critical step back to move forward. Sports Med. 2017;47(8):14871500. PubMed ID: 28078610 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Bizzini M, Hancock D, Impellizzeri F. Suggestions from the field for return to sports participation following anterior cruciate ligament reconstruction: soccer. J Orthop Sports Phys Ther. 2012;42(4):304312. PubMed ID: 22467065 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Engelen-van Melick N, van Cingel RE, Tijssen MP, Nijhuis-van der Sanden MW. Assessment of functional performance after anterior cruciate ligament reconstruction: a systematic review of measurement procedures. Knee Surg Sports Traumatol Arthrosc. 2013;21(4):869879. PubMed ID: 22581194 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Wilk KE, Macrina LC, Cain EL, Dugas JR, Andrews JR. Recent advances in the rehabilitation of anterior cruciate ligament injuries. J Orthop Sports Phys Ther. 2012;42(3):153171. PubMed ID: 22382825 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Burgi CR, Peters S, Ardern CL, et al. Which criteria are used to clear patients to return to sport after primary ACL reconstruction? A scoping review. Br J Sports Med. 2019;53(18):11541161. PubMed ID: 30712009 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Paterno MV, Schmitt LC, Ford KR, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):19681978. PubMed ID: 20702858 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492501. PubMed ID: 15722287 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Boling MC, Padua DA, Marshall SW, Guskiewicz K, Pyne S, Beutler A. A prospective investigation of biomechanical risk factors for patellofemoral pain syndrome: the Joint Undertaking to Monitor and Prevent ACL Injury (JUMP-ACL) cohort. Am J Sports Med. 2009;37(11):21082116. PubMed ID: 19797162 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Fitzgerald GK, Lephart SM, Hwang JH, Wainner RS. Hop tests as predictors of dynamic knee stability. J Orthop Sports Phys Ther. 2001;31(10):588597. PubMed ID: 11665746 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Barber-Westin SD, Noyes FR. Factors used to determine return to unrestricted sports activities after anterior cruciate ligament reconstruction. Arthroscopy. 2011;27(12):16971705. PubMed ID: 22137326 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kotsifaki A, Korakakis V, Whiteley R, Van Rossom S, Jonkers I. Measuring only hop distance during single leg hop testing is insufficient to detect deficits in knee function after ACL reconstruction: a systematic review and meta-analysis. Br J Sports Med. 2020;54(3):139153. PubMed ID: 31142471 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Dingenen B, Malfait B, Nijs S, et al. Can two-dimensional video analysis during single-leg drop vertical jumps help identify non-contact knee injury risk? A one-year prospective study. Clin Biomech. 2015;30(8):781787. PubMed ID: 26144662 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Dingenen B, Malfait B, Vanrenterghem J, Robinson MA, Verschueren SM, Staes FF. Can two-dimensional measured peak sagittal plane excursions during drop vertical jumps help identify three-dimensional measured joint moments? Knee. 2015;22(2):7379. PubMed ID: 25575747 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Dingenen B, Malfait B, Vanrenterghem J, Verschueren SM, Staes FF. The reliability and validity of the measurement of lateral trunk motion in two-dimensional video analysis during unipodal functional screening tests in elite female athletes. Phys Ther Sport. 2014;15(2):117123. PubMed ID: 23891143 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Padua DA, Marshall SW, Boling MC, Thigpen CA, Garrett WE Jr, Beutler AI. The Landing Error Scoring System (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: the JUMP-ACL study. Am J Sports Med. 2009;37(10):19962002. PubMed ID: 19726623 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hall MP, Paik RS, Ware AJ, Mohr KJ, Limpisvasti O. Neuromuscular evaluation with single-leg squat test at 6 months after anterior cruciate ligament reconstruction. Orthop J Sports Med. 2015;3(3):2325967115575900. PubMed ID: 26665033 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Vicon Motion Systems. Plug-In Gait Product Guide—Foundation Notes. Oxford, UK: Vicon Motion Systems; 2010. https://www.viconpeak.com/downloads/documentation/plug-in-gait-product-guide. Accessed July 1, 2018.

    • Search Google Scholar
    • Export Citation
  • 29.

    Sell TC, Ferris CM, Abt JP, et al. Predictors of proximal tibia anterior shear force during a vertical stop-jump. J Orthop Res. 2007;25(12):15891597. PubMed ID: 17626264 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Jackson KM. Fitting of mathematical functions to biomechanical data. IEEE Trans Biomed Eng. 1979;26(2):122124. PubMed ID: 761932 doi:.

  • 31.

    Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity kinematics during level walking. J Orthop Res. 1990;8(3):383392. PubMed ID: 2324857 doi:

  • 32.

    Davis RB III, Õunpuu S, Tyburski D, Gage JR. A gait analysis data collection and reduction technique. Hum Mov Sci. 1991;10(5):575587. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Sell TC, Akins JS, Opp AR, Lephart SM. Relationship between tibial acceleration and proximal anterior tibia shear force across increasing jump distance. J Appl Biomech. 2014;30(1):7581. PubMed ID: 23878269 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Olsen OE, Myklebust G, Engebretsen L, Bahr R. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med. 2004;32(4):10021012. PubMed ID: 15150050 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Schubert P, Kirchner M. Ellipse area calculations and their applicability in posturography. Gait Posture. 2014;39(1):518522. PubMed ID: 24091249 doi:

  • 36.

    Yu B, Garrett WE. Mechanisms of non-contact ACL injuries. Br J Sports Med. 2007;41(suppl 1):i47i51. PubMed ID: 17646249 doi:

  • 37.

    Podraza JT, White SC. Effect of knee flexion angle on ground reaction forces, knee moments and muscle co-contraction during an impact-like deceleration landing: implications for the non-contact mechanism of ACL injury. Knee. 2010;17(4):291295. PubMed ID: 20303276 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Perraton LG, Clark RA, Crossley KM, et al. Greater knee flexion excursion/moment in hopping is associated with better knee function following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2019;27(2):596603. PubMed ID: 30293181 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Yu B, Lin CF, Garrett WE. Lower extremity biomechanics during the landing of a stop-jump task. Clin Biomech. 2006;21(3):297305. PubMed ID: 16378667 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Ho KY, Deaver BB, Nelson T, Turner C. Using a mobile application to assess knee valgus in healthy and post-anterior cruciate ligament reconstruction participants. J Sport Rehabil. 2019;28(5):532535. PubMed ID: 30300073 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 141 141 64
Full Text Views 5 5 1
PDF Downloads 3 3 1