Landing Biomechanics in Adolescent Athletes With and Without a History of Sports-Related Concussion

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Nevada Las Vegas
  • 2 Michigan State University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Recent evidence suggests previously concussed athletes are at greater risk for lower-extremity (LE) injuries than are controls. However, little is known regarding the influence of sports-related concussion (SRC) on landing biomechanics that may provide a mechanistic rationale for LE injury risk. The purpose of this investigation was to examine LE drop-landing biomechanics in adolescent athletes with and without a previous SRC history. Participants included 10 adolescent athletes with an SRC history and 11 controls from multiple sports. Three-dimensional kinematic and kinetic data associated with LE injury risk were analyzed across 5 trials for 30- and 60-cm landing heights. Multivariate analyses indicated group differences in landing patterns from the 30- (P = .041) and 60-cm (P = .015) landing heights. Follow-up analyses indicated that concussed adolescent athletes demonstrated significantly less ankle dorsiflexion and knee flexion versus controls when performing drop landings. Our findings suggest that previously concussed adolescent athletes complete drop-landing maneuvers with ankle and knee joint kinematic patterns that suggest greater risk for LE injury. While limitations such as sport variety and explicit LE injury history are present, the results of this study provide a possible biomechanical rationale for the association between SRC and LE injury risk.

Avedesian and Dufek are with the Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA. Covassin is with the Department of Kinesiology, Michigan State University, East Lansing, MI, USA.

Avedesian (jason.avedesian@unlv.edu) is corresponding author.
  • 1.

    Bryan MA, Rowhani-Rahbar A, Comstock RD, Rivara F, Seattle Sports Concussion Research Collaborative. Sports- and recreation-related concussions in US youth. Pediatrics. 2016;138(1):e20154635. PubMed ID: 27325635 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    O’Connor KL, Baker MM, Dalton SL, Dompier TP, Broglio SP, Kerr ZY. Epidemiology of sport-related concussions in high school athletes: National Athletic Treatment, Injury and Outcomes Network (NATION), 2011–2012 through 2013–2014. J Athl Train. 2017;52(3):175185.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Lincoln AE, Caswell SV, Almquist JL, Dunn RE, Norris JB, Hinton RY. Trends in concussion incidence in high school sports. Am J Sports Med. 2011;39(5):958963. PubMed ID: 21278427 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Westermann RW, Kerr ZY, Wehr P, Amendola A. Increasing lower extremity injury rates across the 2009–2010 to 2014–2015 seasons of National Collegiate Athletic Association football. Am J Sports Med. 2016;44(12):32303236. PubMed ID: 27511792 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    McCrory P, Meeuwisse W, Dvorak J, et al. Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med. 2017;51(11):838847. PubMed ID: 28446457

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Covassin T, Elbin RJ, Harris W, Parker T, Kontos A. The role of age and sex in symptoms, neurocognitive performance, and postural stability in athletes after concussion. Am J Sports Med. 2012;40(6):13031312. PubMed ID: 22539534 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Kerr ZY, Zuckerman SL, Wasserman EB, Covassin T, Djoko A, Dompier TP. Concussion symptoms and return to play time in youth, high school, and college American football athletes. JAMA Pediatr. 2016;170(7):647. PubMed ID: 27135397 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Lax ID, Paniccia M, Agnihotri S, et al. Developmental and gender influences on executive function following concussion in youth hockey players. Brain Inj. 2015;29(12):14091419. PubMed ID: 26362811 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Howell D, Osternig L, Van Donkelaar P, Mayr U, Chou LS. Effects of concussion on attention and executive function in adolescents. Med Sci Sports Exerc. 2013;45(6):10301037. PubMed ID: 23274602 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Howell DR, Osternig LR, Chou LS. Dual-task effect on gait balance control in adolescents with concussion. Arch Phys Med Rehabil. 2013;94(8):15131520. PubMed ID: 23643687 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Howell DR, Lynall RC, Buckley TA, Herman DC. Neuromuscular control deficits and the risk of subsequent injury after a concussion: a scoping review. Sports Med. 2018;48(5):10971115. PubMed ID: 29453743 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Harmon KG, Drezner JA, Gammons M, et al. American Medical Society for Sports Medicine position statement: concussion in sport. Br J Sports Med. 2013;47(1):1526. PubMed ID: 23243113 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Lynall RC, Mauntel TC, Pohlig RT, et al. Lower extremity musculoskeletal injury risk after concussion recovery in high school athletes. J Athl Train. 2017;52(11):10281034. PubMed ID: 29140128 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Brooks MA, Peterson K, Biese K, Sanfilippo J, Heiderscheit BC, Bell DR. Concussion increases odds of sustaining a lower extremity musculoskeletal injury after return to play among collegiate athletes. Am J Sports Med. 2016;44(3):742747. PubMed ID: 26786903 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Fino PC, Becker LN, Fino NF, Griesemer B, Goforth M, Brolinson PG. Effects of recent concussion and injury history on instantaneous relative risk of lower extremity injury in division I collegiate athletes. Clin J Sport Med. 2019;29(3):218223. PubMed ID: 31033615 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Herman DC, Jones D, Harrison A, et al. Concussion may increase the risk of subsequent lower extremity musculoskeletal injury in collegiate athletes. Sports Med. 2017;47(5):10031010. PubMed ID: 27544666 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Pietrosimone B, Golightly YM, Mihalik JP, Guskiewicz KM. Concussion frequency associates with musculoskeletal injury in retired NFL players. Med Sci Sports Exerc. 2015;47(11):23662372. PubMed ID: 25871466 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kardouni JR, Shing TL, McKinnon CJ, Scofield DE, Proctor SP. Risk for lower extremity injury after concussion: a matched cohort study in soldiers. J Orthop Sports Phys Ther. 2018;48(7):533540. PubMed ID: 29739302 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    DuBose DF, Herman DC, Jones DL, et al. Lower extremity stiffness changes after concussion in collegiate football players. Med Sci Sports Exerc. 2017;49(1):167172. PubMed ID: 27501359 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Maquirriain J. Leg stiffness changes in athletes with Achilles tendinopathy. Int J Sports Med. 2012;33(7):567571. doi:

  • 21.

    Watsford ML, Murphy AJ, McLachlan KA, et al. A prospective study of the relationship between lower body stiffness and hamstring injury in professional Australian rules footballers. Am J Sports Med. 2010;38(10):20582064. PubMed ID: 20595555 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Lapointe AP, Nolasco LA, Sosnowski A, et al. Kinematic differences during a jump cut maneuver between individuals with and without a concussion history. Int J Psychophysiol. 2018;132(pt A):9398. PubMed ID: 28818697 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Quatman CE, Hewett TE. The anterior cruciate ligament injury controversy: is “valgus collapse” a sex-specific mechanism? Br J Sports Med. 2009;43(5):328335. PubMed ID: 19372087 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    James CR, Herman JA, Dufek JS, Bates BT. Number of trials necessary to achieve performance stability of selected ground reaction force variables during landing. J Sports Sci Med. 2007;6(1):126134. PubMed ID: 24149234

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Powers CM. The influence of abnormal hip mechanics on knee injury: a biomechanical perspective. J Orthop Sports Phys Ther. 2010;40(2):4251. PubMed ID: 20118526 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Dompier TP, Kerr ZY, Marshall SW, et al. Incidence of concussion during practice and games in youth, high school, and collegiate American football players. JAMA Pediatr. 2015;169(7):659665. PubMed ID: 25938704 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Nordin AD, Dufek JS, James CR, Bates BT. Classifying performer strategies in drop landing activities. J Sports Sci. 2017;35(18):18581863. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Roewer BD, Ford KR, Myer GD, Hewett TE. The “impact” of force filtering cut-off frequency on the peak knee abduction moment during landing: artefact or “artifiction”? Br J Sports Med. 2014;48(6):464468. PubMed ID: 22893510 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Ireland ML. The female ACL: why is it more prone to injury? Orthop Clin North Am. 2002;33(4):637651. PubMed ID: 12528906 doi:

  • 31.

    Devita P, Skelly WA. Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med Sci Sports Exerc. 1992;24(1):108115. PubMed ID: 1548984 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Leppänen M, Pasanen K, Kujala UM, et al. Stiff landings are associated with increased ACL injury risk in young female basketball and floorball players. Am J Sports Med. 2017;45(2):386393. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Malloy P, Morgan A, Meinerz C, Geiser C, Kipp K. The association of dorsiflexion flexibility on knee kinematics and kinetics during a drop vertical jump in healthy female athletes. Knee Surg Sports Traumatol Arthrosc. 2015;23(12):35503555. PubMed ID: 25112598 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Sigward SM, Ota S, Powers CM. Predictors of frontal plane knee excursion during a drop land in young female soccer players. J Orthop Sports Phys Ther. 2008;38(11):661667. PubMed ID: 18978451 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Lima YL, Ferreira VMLM, de Paula Lima PO, Bezerra MA, de Oliveira RR, Almeida GPL. The association of ankle dorsiflexion and dynamic knee valgus: a systematic review and meta-analysis. Phys Ther Sport. 2018;29:6169. PubMed ID: 28974358 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Gilbert FC, Burdette GT, Joyner AB, Llewellyn TA, Buckley TA. Association between concussion and lower extremity injuries in collegiate athletes. Sports Health. 2016;8(6):561567. PubMed ID: 27587598 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Houston MN, Hoch JM, Cameron KL, Abt JP, Peck KY, Hoch MC. Sex and number of concussions influence the association between concussion and musculoskeletal injury history in collegiate athletes. Brain Inj. 2018;32(11):13531358. PubMed ID: 30136896 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Swanik C. Brains and sprains: the brain’s role in noncontact anterior cruciate ligament injuries. J Athl Train. 2015;50(10):11001102. PubMed ID: 26340611 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Eagle SR, Kontos AP, Pepping G-J, et al. Increased risk of musculoskeletal injury following sport-related concussion: a perception–action coupling approach. Sports Med. 2020;50(1):1523. PubMed ID: 31228023 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Eagle SR, Nindl BC, Johnson CD, Kontos AP, Connaboy C. Does concussion affect perception-action coupling behavior? Action boundary perception as a biomarker for concussion [published online ahead of print February 27, 2018]. Clin J Sport Med. PubMed ID: 30829684 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    McGowan AL, Bretzin AC, Savage JL, et al. Preliminary evidence for differential trajectories of recovery for cognitive flexibility following sports-related concussion. Neuropsychology. 2018;32(5):564574. PubMed ID: 29952610 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Lynall RC, Mauntel TC, Padua DA, Mihalik JP. Acute lower extremity injury rates increase after concussion in college athletes. Med Sci Sports Exerc. 2015;47(12):24872492. PubMed ID: 26057941 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Swanik CB, Covassin T, Stearne DJ, Schatz P. The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. Am J Sports Med. 2007;35(6):943948. PubMed ID: 17369562 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 365 365 148
Full Text Views 24 24 9
PDF Downloads 26 26 14