Compensatory Trunk Movements in Naturalistic Reaching and Manipulation Tasks in Chronic Stroke Survivors

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Impairment of arm movements poststroke often results in the use of compensatory trunk movements to complete motor tasks. These compensatory movements have been mostly observed in tightly controlled conditions, with very few studies examining them in more naturalistic settings. In this study, the authors quantified the presence of compensatory movements during a set of continuous reaching and manipulation tasks performed with both the paretic and nonparetic arm (in 9 chronic stroke survivors) or the dominant arm (in 20 neurologically unimpaired control participants). Kinematic data were collected using motion capture to assess trunk and elbow movement. The authors found that trunk displacement and rotation were significantly higher when using the paretic versus nonparetic arm (P = .03). In contrast, elbow angular displacement was significantly lower in the paretic versus nonparetic arm (P = .01). The reaching tasks required significantly higher trunk compensation and elbow movement than the manipulation tasks. These results reflect increased reliance on compensatory trunk movements poststroke, even in everyday functional tasks, which may be a target for home rehabilitation programs. This study provides a novel contribution to the rehabilitation literature by examining the presence of compensatory movements in naturalistic reaching and manipulation tasks.

Jayasinghe and Ranganathan are with the Department of Kinesiology, Michigan State University, East Lansing, MI, USA. Wang and Biswas are with the Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA. Gebara is with the Department of Physical Medicine and Rehabilitation, Michigan State University, East Lansing, MI, USA. Ranganathan is also with the Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA.

Jayasinghe (szj5408@psu.edu) is corresponding author.
  • 1.

    Bourbonnais D, Noven SV. Weakness in patients with hemiparesis. Am J Occup Ther. 1989;43(5):313319. PubMed ID: 2655457 doi:

  • 2.

    Canning CG, Ada L, O’Dwyer N. Slowness to develop force contributes to weakness after stroke. Arch Phys Med Rehabil. 1999;80(1):6670. PubMed ID: 9915374 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Chae J, Yang G, Park BK, Labatia I. Delay in initiation and termination of muscle contraction, motor impairment, and physical disability in upper limb hemiparesis. Muscle Nerve. 2002;25(4):568575. PubMed ID: 11932975 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Cheung VC, Turolla A, Agostini M, et al. Muscle synergy patterns as physiological markers of motor cortical damage. Proc Natl Acad Sci. 2012;109(36):1465214656. PubMed ID: 22908288 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Roh J, Rymer WZ, Perreault EJ, Yoo SB, Beer RF. Alterations in upper limb muscle synergy structure in chronic stroke survivors. J Neurophysiol. 2013;109(3):768781. PubMed ID: 23155178 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Rosenfalck A, Andreassen S. Impaired regulation of force and firing pattern of single motor units in patients with spasticity. J Neurol Neurosurg Psychiatry. 1980;43(10):907916. PubMed ID: 7441270 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Safavynia S, Torres-Oviedo G, Ting L. Muscle synergies: implications for clinical evaluation and rehabilitation of movement. Top Spinal Cord Inj Rehabil. 2011;17(1):1624. PubMed ID: 21796239 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Sunderland A, Tinson D, Bradley L, Hewer RL. Arm function after stroke. An evaluation of grip strength as a measure of recovery and a prognostic indicator. J Neurol Neurosurg Psychiatry. 1989;52(11):12671272. PubMed ID: 2592969 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Jones TA. Motor compensation and its effects on neural reorganization after stroke. Nat Rev Neurosci. 2017;18(5):267280. PubMed ID: 28331232 doi:

  • 10.

    Krakauer JW. Arm function after stroke: from physiology to recovery. Semin Neurol. 2005;25(4):384395. PubMed ID: 16341995

  • 11.

    Levin MF, Kleim JA, Wolf SL. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil Neural Repair. 2009;23(4):313319. PubMed ID: 19118128 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Cirstea M, Levin MF. Compensatory strategies for reaching in stroke. Brain. 2000;123(5):940953. doi:

  • 13.

    Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):8490. PubMed ID: 16415682 doi:

  • 14.

    Latash ML, Anson JG. What are “normal movements” in atypical populations? Behav Brain Sci. 1996;19(1):5568. doi:

  • 15.

    Raghavan P, Santello M, Gordon AM, Krakauer JW. Compensatory motor control after stroke: an alternative joint strategy for object-dependent shaping of hand posture. J Neurophysiol. 2010;103(6):30343043. PubMed ID: 20457866 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Levin MF, Michaelsen SM, Cirstea CM, Roby-Brami A. Use of the trunk for reaching targets placed within and beyond the reach in adult hemiparesis. Exp Brain Res. 2002;143(2):171180. PubMed ID: 11880893 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Roby-Brami A, Feydy A, Combeaud M, Biryukova E, Bussel B, Levin M. Motor compensation and recovery for reaching in stroke patients. Acta Neurol Scand. 2003;107(5):369381. PubMed ID: 12713530 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Steenbergen B, van Thiel E, Hulstijn W, Meulenbroek RG. The coordination of reaching and grasping in spastic hemiparesis. Hum Mov Sci. 2000;19(1):75105. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8(8):741754. PubMed ID: 19608100 doi:

  • 20.

    Michaelsen SM, Luta A, Roby-Brami A, Levin MF. Effect of trunk restraint on the recovery of reaching movements in hemiparetic patients. Stroke. 2001;32(8):18751883. PubMed ID: 11486120 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Murphy MA, Willén C, Sunnerhagen KS. Kinematic variables quantifying upper-extremity performance after stroke during reaching and drinking from a glass. Neurorehabil Neural Repair. 2011;25(1):7180. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Massie CL, Malcolm MP, Greene DP, Browning RC. Biomechanical contributions of the trunk and upper extremity in discrete versus cyclic reaching in survivors of stroke. Top Stroke Rehabil. 2014;21(1):2332. PubMed ID: 24521837 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Dobkin BH. Strategies for stroke rehabilitation. Lancet Neurol. 2004;3(9):528536. PubMed ID: 15324721 doi:

  • 24.

    Kwakkel G, Lannin NA, Borschmann K, et al. Standardized measurement of sensorimotor recovery in stroke trials: consensus-based core recommendations from the stroke recovery and rehabilitation roundtable. Neurorehabil Neural Repair. 2017;31(9):784792. PubMed ID: 28934918 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Ranganathan R, Wang R, Gebara R, Biswas S. Detecting compensatory trunk movements in stroke survivors using a wearable system. In: Proceedings of the 2017 Workshop on Wearable Systems and Applications. ACM; 2017:2932.

    • Search Google Scholar
    • Export Citation
  • 26.

    Ranganathan R, Wang R, Dong B, Biswas S. Identifying compensatory movement patterns in the upper extremity using a wearable sensor system. Physiol Meas. 2017;38(12):22222234. PubMed ID: 29099724 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Lee M-H, Farshchiansadegh A, Ranganathan R. Children show limited movement repertoire when learning a novel motor skill. Dev Sci. 2018;21(4):e12614. PubMed ID: 28952183 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Massie CL, Malcolm MP, Greene DP, Browning RC. Kinematic motion analysis and muscle activation patterns of continuous reaching in survivors of stroke. J Mot Behav. 2012;44(3):213222. PubMed ID: 22647246 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Levin MF. Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain. 1996;119(1):281293. doi:

  • 30.

    Lum PS, Mulroy S, Amdur RL, Requejo P, Prilutsky BI, Dromerick AW. Gains in upper extremity function after stroke via recovery or compensation: potential differential effects on amount of real-world limb use. Top Stroke Rehabil. 2009;16(4):237253. PubMed ID: 19740730 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Roh J, Rymer WZ, Beer RF. Evidence for altered upper extremity muscle synergies in chronic stroke survivors with mild and moderate impairment. Front Hum Neurosci. 2015;9:6. PubMed ID: 25717296 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Ranganathan R. Reorganization of finger coordination patterns through motor exploration in individuals after stroke. J Neuroengineering Rehabil. 2017;14(1):90. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Krakauer JW, Kitago T, Goldsmith J, et al. Comparing a novel neuroanimation experience to conventional therapy for high-dose, intensive upper-limb training in subacute stroke: the SMARTS2 randomized trial. medRxiv. Published online 2020.

    • Search Google Scholar
    • Export Citation
  • 34.

    Michaelsen SM, Jacobs S, Roby-Brami A, Levin MF. Compensation for distal impairments of grasping in adults with hemiparesis. Exp Brain Res. 2004;157(2):162173. PubMed ID: 14985899 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Bakhti K, Mottet D, Schweighofer N, Froger J, Laffont I. Proximal arm non-use when reaching after a stroke. Neurosci Lett. 2017;657:9196. PubMed ID: 28778806 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Taub E, Crago JE, Burgio LD, et al. An operant approach to rehabilitation medicine: overcoming learned nonuse by shaping. J Exp Anal Behav. 1994;61(2):281293. PubMed ID: 8169577 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    De Rugy A, Loeb GE, Carroll TJ. Muscle coordination is habitual rather than optimal. J Neurosci. 2012;32(21):73847391. PubMed ID: 22623684 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Lin T-H, Denomme A, Ranganathan R. Learning alternative movement coordination patterns using reinforcement feedback. Exp Brain Res. 2018;236(5):13951407. PubMed ID: 29536148 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Bach-y-Rita P. Theoretical and practical considerations in the restoration of function after stroke. Top Stroke Rehabil. 2001;8(3):115. PubMed ID: 14523734 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Bayona NA, Bitensky J, Salter K, Teasell R. The role of task-specific training in rehabilitation therapies. Top Stroke Rehabil. 2005;12(3):5865. PubMed ID: 16110428 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Biswas D, Cranny A, Gupta N, et al. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification. Hum Mov Sci. 2015;40:5976. PubMed ID: 25528632 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Lang CE, Bland MD, Bailey RR, Schaefer SY, Birkenmeier RL. Assessment of upper extremity impairment, function, and activity after stroke: foundations for clinical decision making. J Hand Ther. 2013;26(2):104115. PubMed ID: 22975740 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Alt Murphy M, Willén C, Sunnerhagen KS. Movement kinematics during a drinking task are associated with the activity capacity level after stroke. Neurorehabil Neural Repair. 2012;26(9):11061115. PubMed ID: 22647879 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Massie CL, Fritz S, Malcolm MP. Elbow extension predicts motor impairment and performance after stroke. Rehabil Res Pract. 2011;2011:381978. PubMed ID: 22110974

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 196 196 56
Full Text Views 8 8 3
PDF Downloads 5 5 2