Whole-Body Change-of-Direction Task Execution Asymmetries After Anterior Cruciate Ligament Reconstruction

in Journal of Applied Biomechanics
View More View Less
  • 1 Sports Surgery Clinic
  • 2 Manchester Metropolitan University
  • 3 University of Bath
  • 4 University of Roehampton
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Cutting maneuvers can be executed at a range of angles and speeds, and these whole-body task descriptors are closely associated with lower-limb mechanical loading. Asymmetries in angle and speed when changing direction off the operated and nonoperated limbs after anterior cruciate ligament reconstruction may therefore influence the interpretation of interlimb differences in joint-level biomechanical parameters. The authors hypothesized that athletes would reduce center-of-mass heading angle deflection and body rotation during the change-of-direction stance phase when cutting from the operated limb, and would compensate for this by orienting their center-of-mass trajectory more toward the new intended direction of travel prior to touchdown. A total of 144 male athletes 8 to 10 months after anterior cruciate ligament reconstruction performed a maximum-effort sidestep cutting maneuver while kinematic, kinetic, and ground reaction force data were recorded. Peak ground reaction force and knee joint moments were lower when cutting from the operated limb. Center-of-mass heading angle deflection during stance phase was reduced for cuts performed from the operated limb and was negatively correlated with heading angle at touchdown. Between-limb differences in body orientation and horizontal velocity at touchdown were also observed. These systematic asymmetries in cut execution may require consideration when interpreting joint-level interlimb asymmetries after anterior cruciate ligament reconstruction and are suggestive of the use of anticipatory control to co-optimize task achievement and mechanical loading.

Daniels, Drake, and King are with the Sports Medicine Research Department, Sports Surgery Clinic, Dublin, Ireland. Daniels is also with the Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom. Drake is also with the Department for Health, University of Bath, Bath, United Kingdom. King and Strike are with the Department of Life Sciences, University of Roehampton, London, United Kingdom.

Daniels (k.daniels@mmu.ac.uk) is corresponding author.
  • 1.

    Taylor JB, Wright AA, Dischiavi SL, Townsend MA, Marmon AR. Activity demands during multi-directional team sports: a systematic review. Sport Med. 2017;47(12):25332551. PubMed ID: 28801751 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Alentorn-Geli E, Myer GD, Silvers HJ, et al. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: mechanisms of injury and underlying risk factors. Knee Surgery, Sport Traumatol Arthrosc. 2009;17(7):705729. PubMed ID: 19452139 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Boden BP, Dean CS, Feagin JA, Garrett WE. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573578. PubMed ID: 10875418 doi:

  • 4.

    Griffin LY, Agel J, Albohm MJ, et al. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg. 2000;8(3):141150. PubMed ID: 10874221 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE. Treatment of anterior cruciate ligament injuries, part I. Am J Sports Med. 2005;33(10):15791602. PubMed ID: 16199611 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE. Treatment of anterior cruciate ligament injuries, part 2. Am J Sports Med. 2005;33(11):17511767. PubMed ID: 16230470 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Myklebust G, Bahr R. Return to play guidelines after anterior cruciate ligament surgery. Br J Sports Med. 2005;39:127131. PubMed ID: 15728687 doi:

  • 8.

    King E, Richter C, Franklyn-Miller A, et al. Biomechanical but not timed performance asymmetries persist between limbs 9 months after ACL reconstruction during planned and unplanned change of direction. J Biomech. 2018;81:93103. PubMed ID: 30322642 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    King E, Richter C, Franklyn-Miller A, Wadey R, Moran R, Strike S. Back to normal symmetry? Biomechanical variables remain more asymmetrical than normal during jump and change-of-direction testing 9 months after anterior cruciate ligament reconstruction. Am J Sports Med. 2019;47(5):11751185. PubMed ID: 30943079 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Orishimo KF, Kremenic IJ, Mullaney MJ, McHugh MP, Nicholas SJ. Adaptations in single-leg hop biomechanics following anterior cruciate ligament reconstruction. Knee Surgery, Sport Traumatol Arthrosc. 2010;18(11):15871593. PubMed ID: 20549185 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Miles JJ, King E, Falvey ÉC, Daniels KAJ. Patellar and hamstring autografts are associated with different jump task loading asymmetries after ACL reconstruction. Scand J Med Sci Sports. 2019;29(8):12121222. PubMed ID: 31034636 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    King E, Richter C, Franklyn-Miller A, et al. Whole-body biomechanical differences between limbs exist 9 months after ACL reconstruction across jump/landing tasks. Scand J Med Sci Sports. 2018;28(12):25672578. PubMed ID: 29972874 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Gokeler A, Hof AL, Arnold MP, Dijkstra PU, Postema K, Otten E. Abnormal landing strategies after ACL reconstruction. Scand J Med Sci Sports. 2010;20(1):1219. PubMed ID: 19210671 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Smeets A, Verheul J, Vanrenterghem J, et al. Single-joint and whole-body movement changes in ACL athletes returning to sport. Med Sci Sports Exerc. 2020;52(8):16581667. PubMed ID: 32079913 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Paterno M V., Schmitt LC, Ford KR, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):19681978. PubMed ID: 20702858 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    McBurnie AJ, Dos’Santos T, Jones PA. Biomechanical associates of performance and knee joint loads during a 70–90° cutting maneuver in subelite soccer players [published online ahead of print July 1, 2019]. J Strength Cond Res. 19. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    David S, Mundt M, Komnik I, Potthast W. Understanding cutting maneuvers—the mechanical consequence of preparatory strategies and foot strike pattern. Hum Mov Sci. 2018;62:202210. PubMed ID: 30419513 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Vanrenterghem J, Venables E, Pataky T, Robinson MA. The effect of running speed on knee mechanical loading in females during side cutting. J Biomech. 2012;45(14):24442449. PubMed ID: 22835648 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Sigward SM, Cesar GM, Havens KL. Predictors of frontal plane knee moments during side-step cutting to 45 and 110 degrees in men and women: implications for anterior cruciate ligament injury. Clin J Sport Med. 2015;25(6):529534. PubMed ID: 25290102 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Havens KL, Sigward SM. Whole body mechanics differ among running and cutting maneuvers in skilled athletes. Gait Posture. 2015;42(3):240245. PubMed ID: 25149902 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Schot P, Dart J, Schuh M. Biomechanical analysis of two change-of-direction maneuvers while running. J Orthop Sports Phys Ther. 1995;22(6):254258. PubMed ID: 8580952 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Schreurs MJ, Benjaminse A, Lemmink KAPM. Sharper angle, higher risk? The effect of cutting angle on knee mechanics in invasion sport athletes. J Biomech. 2017;63:144150. PubMed ID: 28886868 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kristianslund E, Faul O, Bahr R, Myklebust G, Krosshaug T. Sidestep cutting technique and knee abduction loading: implications for ACL prevention exercises. Br J Sports Med. 2014;48(9):779783. PubMed ID: 23258848 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Havens KL, Sigward SM. Joint and segmental mechanics differ among running and cutting maneuvers in skilled athletes. Gait Posture. 2015;41(1):3338. PubMed ID: 25194689 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Dai B, Garrett WE, Gross MT, Padua DA, Queen RM, Yu B. The effect of performance demands on lower extremity biomechanics during landing and cutting tasks. J Sport Heal Sci. 2019;8(3):228234. PubMed ID: 31193278 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Dos’Santos T, Thomas C, Comfort P, Jones PA. The effect of angle and velocity on change of direction biomechanics: an angle-velocity trade-off. Sport Med. 2018;48(10):22412259. PubMed ID: 30094799 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Besier TF, Lloyd DG, Cochrane JL, Ackland TR. External loading of the knee joint during running and cutting maneuvers. Med Sci Sports Exerc. 2001;33(7):11681175. PubMed ID: 11445764 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med. 2016;50(13):804808. PubMed ID: 27162233 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Morris RC, Hulstyn MJ, Fleming BC, Owens BD, Fadale PD. Return to play following anterior cruciate ligament reconstruction. Clin Sports Med. 2016;35(4):655668. PubMed ID: 27543405 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Marshall BM, Franklyn-Miller AD, King E, et al. Biomechanical factors associated with time to complete a change of direction cutting maneuver. J Strength Cond Res. 2014;28(10):28452851. PubMed ID: 24662232 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Kristianslund E, Krosshaug T, Van den Bogert AJ. Effect of low pass filtering on joint moments from inverse dynamics: Implications for injury prevention. J Biomech. 2012;45(4):666671. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):155159. PubMed ID: 19565683 doi:

  • 33.

    Almonroeder TG, Garcia E, Kurt M. The effects of anticipation on the mechanics of the knee during single-leg cutting tasks: a systematic review. Int J Sports Phys Ther. 2015;10(7):918928. PubMed ID: 26673276

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Brown SR, Brughelli M, Hume PA. Knee mechanics during planned and unplanned sidestepping: a systematic review and meta-analysis. Sport Med. 2014;44(11):15731588. PubMed ID: 25015478 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Lee MJC, Lloyd DG, Lay BS, Bourke PD, Alderson JA. Different visual stimuli affect body reorientation strategies during sidestepping. Scand J Med Sci Sports. 2017;27(5):492500. PubMed ID: 26926713 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Lee MJC, Lloyd DG, Lay BS, Bourke PD, Alderson JA. Effects of different visual stimuli on postures and knee moments during sidestepping. Med Sci Sports Exerc. 2013;45(9):17401748. PubMed ID: 23481170 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Andrews JR, McLeod WD, Ward T, Howard K. The cutting mechanism. Am J Sports Med. 1977;5(3):111121. PubMed ID: 860773 doi:

  • 38.

    Patla AE, Adkin A, Ballard T. Online steering: coordination and control of body center of mass, head and body reorientation. Exp Brain Res. 1999;129(4):629634. PubMed ID: 10638436 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Tanikawa H, Matsumoto H, Komiyama I, Kiriyama Y, Toyama Y, Nagura T. Comparison of knee mechanics among risky athletic motions for noncontact anterior cruciate ligament injury. J Appl Biomech. 2013;29(6):749755. PubMed ID: 23434840 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Mok KM, Bahr R, Krosshaug T. Reliability of lower limb biomechanics in two sport-specific sidestep cutting tasks. Sport Biomech. 2018;17(2):157167. PubMed ID: 28281390 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Dos’Santos T, McBurnie A, Thomas C, Comfort P, Jones PA. Biomechanical determinants of the modified and traditional 505 change of direction speed test. J Strength Cond Res. 2019;34(5):12851296. PubMed ID: 31868815 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Richter C, King E, Strike S, Franklyn-Miller A. Objective classification and scoring of movement deficiencies in patients with anterior cruciate ligament reconstruction. PLoS One. 2019;14(7):e0206024. PubMed ID: 31335914 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Baumgart C, Schubert M, Hoppe MW, Gokeler A, Freiwald J. Do ground reaction forces during unilateral and bilateral movements exhibit compensation strategies following ACL reconstruction? Knee Surg Sport Traumatol Arthrosc. 2017;25(5):13851394. PubMed ID: 25957607 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Dos’Santos T, Thomas C, Comfort P, Jones PA. The effect of training interventions on change of direction biomechanics associated with increased anterior cruciate ligament loading: a scoping review. Sport Med. 2019;49(12):18371859. PubMed ID: 31493206 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    King E, Franklyn-Miller A, Richter C, et al. Clinical and biomechanical outcomes of rehabilitation targeting intersegmental control in athletic groin pain: prospective cohort of 205 patients. Br J Sports Med. 2018;52:10541062. PubMed ID: 29550754 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Yang C, Yao W, Garrett WE, et al. Effects of an intervention program on lower extremity biomechanics in stop-jump and side-cutting tasks. Am J Sports Med. 2018;46(12):30143022. PubMed ID: 30148646 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Kim JH, Lee K, Kong SJ, An KO. Effect of anticipation on lower extremity biomechanics during side- and cross-cutting maneuvers in young soccer players. Am J Sports Med. 2014;42(8):19851992. PubMed ID: 24787044 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Pollard CD, Davis IMC, Hamill J. Influence of gender on hip and knee mechanics during a randomly cued cutting maneuver. Clin Biomech. 2004;19(10):10221031. PubMed ID: 15531052 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Green BSB, Blake C, Caulfield BM. A comparison of cutting technique performance in rugby union players. J Strength Cond Res. 2011;25(10):26682680. PubMed ID: 21886011 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Sigward SM, Pollard CD, Havens K, Powers CM. The influence of sex and maturation on knee mechanics during sidestep cutting. Med Sci Sports Exerc. 2012;44(8):14971503. PubMed ID: 22330027 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Xergia SA, McClelland JA, Kvist J, Vasiliadis HS, Georgoulis AD. The influence of graft choice on isokinetic muscle strength 4-24 months after anterior cruciate ligament reconstruction. Knee Surg Sport Traumatol Arthrosc. 2011;19(5):768780. PubMed ID: 21234542 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Mornieux G, Gehring D, Fürst P, Gollhofer A. Anticipatory postural adjustments during cutting manoeuvres in football and their consequences for knee injury risk. J Sports Sci. 2014;32(13):12551262. PubMed ID: 24742137 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 656 657 90
Full Text Views 10 10 2
PDF Downloads 5 5 1