Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

This study examined the relationship between Achilles tendon (AT) length and 100-m sprint time in sprinters. The AT lengths at 3 different portions of the triceps surae muscle in 48 well-trained sprinters were measured using magnetic resonance imaging. The 3 AT lengths were calculated as the distance from the calcaneal tuberosity to the muscle–tendon junction of the soleus, gastrocnemius medialis, and gastrocnemius lateralis, respectively. The absolute 3 AT lengths did not correlate significantly with personal best 100-m sprint time (r = −.023 to .064, all Ps > .05). Furthermore, to minimize the differences in the leg length among participants, the 3 AT lengths were normalized to the shank length, and the relative 3 AT lengths did not correlate significantly with personal best 100-m sprint time (r = .023 to .102, all Ps > .05). Additionally, no significant correlations were observed between the absolute and relative (normalized to body mass) cross-sectional areas of the AT and personal best 100-m sprint time (r = .012 and .084, respectively, both Ps > .05). These findings suggest that the AT morphological variables, including the length, may not be related to superior 100-m sprint time in sprinters.

The authors are with the Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan.

Suga (t-suga@fc.ritsumei.ac.jp) is corresponding author.
  • 1.

    Novacheck TF. The biomechanics of running. Gait Posture. 1998;7(1):7795. PubMed ID: 10200378 doi:

  • 2.

    Nagahara R, Kanehisa H, Matsuo A, Fukunaga T. Are peak ground reaction forces related to better sprint acceleration performance? Sports Biomech. 2019;24:110. PubMed ID: 30676878 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Nagahara R, Mizutani M, Matsuo A, Kanehisa H, Fukunaga T. Association of sprint performance with ground reaction forces during acceleration and maximal speed phases in a single sprint. J Appl Biomech. 2018;34(2):104110. PubMed ID: 28952906 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Bramble DM, Lieberman DE. Endurance running and the evolution of Homo. Nature. 2004;432(7015):345352. PubMed ID: 15549097 doi:

  • 5.

    Mero A, Komi PV, Gregor RJ. Biomechanics of sprint running. A review. Sports Med. 1992;13(6):376392. PubMed ID: 1615256 doi:

  • 6.

    Hunter GR, Katsoulis K, McCarthy JP, et al. Tendon length and joint flexibility are related to running economy. Med Sci Sports Exerc. 2011;43(8)14921499. PubMed ID: 21266930 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ueno H, Suga T, Takao K, et al. Relationship between Achilles tendon length and running performance in well-trained male endurance runners. Scand J Med Sci Sports. 2018;28(2):446451. PubMed ID: 28658509 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Monte A, Zamparo P. Correlations between muscle-tendon parameters and acceleration ability in 20 m sprints. PLoS One. 2019;14(3):e0213347. PubMed ID: 30849114 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Miyatani M, Kanehisa H, Ito M, Kawakami Y, Fukunaga T. The accuracy of volume estimates using ultrasound muscle thickness measurements in different muscle groups. Eur J Appl Physiol. 2004;91(2-3):264272. PubMed ID: 14569399 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Wachi M, Suga T, Higuchi T, et al. Applicability of ultrasonography for evaluating trunk muscle size: a pilot study. J Phys Ther Sci. 2017;29(2):245249. PubMed ID: 28265150 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Dorn TW, Schache AG, Pandy MG. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance. J Exp Biol. 2012;215(11):19441956. PubMed ID: 22573774 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Schache AG, Blanch PD, Dorn TW, Brown NA, Rosemond D, Pandy MG. Effect of running speed on lower limb joint kinetics. Med Sci Sports Exerc. 2011;43(7):12601271. PubMed ID: 21131859 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Miyake Y, Suga T, Otsuka M, et al. The knee extensor moment arm is associated with performance in male sprinters. Eur J Appl Physiol. 2017;117(3):533539. PubMed ID: 28188370 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Tanaka T, Suga T, Otsuka M, et al. Relationship between the length of the forefoot bones and performance in male sprinters. Scand J Med Sci Sports. 2017;27(12):16731680. PubMed ID: 28207966 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Kunimasa Y, Sano K, Oda T, et al. Specific muscle-tendon architecture in elite Kenyan distance runners. Scand J Med Sci Sports. 2014;24(4):e269e274. PubMed ID: 26207267 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ueno H, Suga T, Miyake Y, et al. Specific adaptations of patellar and Achilles tendons in male sprinters and endurance runners. Transl Sports Med. 2018;1(3):172179. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Wiesinger HP, Rieder F, Kösters A, Müller E, Seynnes OR. Are sport-specific profiles of tendon stiffness and cross-sectional area determined by structural or functional integrity? PLoS One. 2016:11(6):e0158441. PubMed ID: 27362657 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kubo K, Ikebukuro T, Yata H, Tomita M, Okada M. Morphological and mechanical properties of muscle and tendon in highly trained sprinters. J Appl Biomech. 2011;27(4):336344. PubMed ID: 21896950 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kumagai K, Abe T, Brechue WF, Ryushi T, Takano S, Mizuno M. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol. 2000;88:811816. PubMed ID: 10710372 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Brouwer EF, Myhrvold SB, Benth , Hoelsbrekken SE. Ultrasound measurements of Achilles tendon length using skin markings are more reliable than extended-field-of-view imaging. Knee Surg Sports Traumatol Arthrosc. 2018;26(7):20882094. PubMed ID: 29185003 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Fouré A, Nordez A, Cornu C. Plyometric training effects on Achilles tendon stiffness and dissipative properties. J Appl Physiol. 2010;109(3):849854. PubMed ID: 20576842 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Silbernagel KG, Shelley K, Powell S, Varrecchia S. Extended field of view ultrasound imaging to evaluate Achilles tendon length and thickness: a reliability and validity study. Muscles Ligaments Tendons J. 2016;6(1):104110. PubMed ID: 27331037 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess. 1994;6:284290. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Magnusson SP, Kjaer M. Region-specific differences in Achilles tendon cross-sectional area in runners and non-runners. Eur J Appl Physiol. 2003;90(5–6):549553. PubMed ID: 12905044 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Rosager S, Aagaard P, Dyhre-Poulsen P, Neergaard K, Kjaer M, Magnusson SP. Load-displacement properties of the human triceps surae aponeurosis and tendon in runners and non-runners. Scand J Med Sci Sports. 2002;12(2):9098. PubMed ID: 12121426 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Bohm S, Mersmann F, Schroll A, Mäkitalo N, Arampatzis A. Insufficient accuracy of the ultrasound-based determination of Achilles tendon cross-sectional area. J Biomech. 2016;49(13):29322937. PubMed ID: 27498950 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Kruse A, Stafilidis S, Tilp M. Ultrasound and magnetic resonance imaging are not interchangeable to assess the Achilles tendon cross-sectional-area. Eur J Appl Physiol. 2017;117(1):7382. PubMed ID: 27838848 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Muraoka T, Muramatsu T, Fukunaga T, Kanehisa H. Elastic properties of human Achilles tendon are correlated to muscle strength. J Appl Physiol. 2005;99(2):665669. PubMed ID: 15790689 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Bohm S, Mersmann F, Arampatzis A. Human tendon adaptation in response to mechanical loading: a systematic review and meta-analysis of exercise intervention studies on healthy adults. Sports Med Open. 2015;1(1):7. PubMed ID: 27747846 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Kulmala JP, Korhonen MT, Ruggiero L, et al. Walking and running require greater effort from the ankle than the knee extensor muscles. Med Sci Sports Exerc. 2016;48(11):21812189. PubMed ID: 27327033 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Otsuka M, Kurihara T, Isaka T. Effect of a wide stance on block start performance in Sprint running. PLoS One. 2015;10(11):e0142230. PubMed ID: 26544719 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Macadam P, Nuell S, Cronin JB, et al. Kinematic and kinetic differences in block and split-stance standing starts during 30 m sprint-running. Eur J Sport Sci. 2019;19(8):10241031. PubMed ID: 30732539 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Nagahara R, Gleadhill S, Ohshima Y. Improvement in sprint start performance by modulating an initial loading location on the starting blocks [published online ahead of print July 1, 2020]. J Sports Sci. PubeMed ID: 32608346 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Brazil A, Exell T, Wilson C, Willwacher S, Bezodis I, Irwin G. Lower limb joint kinetics in the starting blocks and first stance in athletic sprinting. J Sports Sci. 2017;35(16):16291635. PubMed ID: 27598715 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Sado N, Yoshioka S, Fukashiro S. Three-dimensional kinetic function of the lumbo-pelvic-hip complex during block start. PLoS One. 2020;15(3):e0230145. PubMed ID: 32163481 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Schache AG, Lai AKM, Brown NAT, Crossley KM, Pandy MG. Lower-limb joint mechanics during maximum acceleration sprinting. J Exp Biol. 2019;222(22):jeb209460. PubMed ID: 31672729 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Tomita D, Suga T, Tanaka T, et al. A pilot study on the importance of forefoot bone length in male 400-m sprinters: is there a key morphological factor for superior long sprint performance? BMC Res Notes. 2018;11(1):583. PubMed ID: 30103812 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Tomita D, Suga T, Ueno H, et al. Relationship between knee extensor moment arm and long-sprint performance in male 400-m sprinters. Transl Sports Med. 2018;1(4):172179. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Tomita D, Suga T, Terada M, et al. A pilot study on a potential relationship between leg bone length and sprint performance in sprinters; are there any event-related differences in 100-m and 400-m sprints? BMC Res Notes. 2020;13(1):297. PubMed ID: 32571392 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Hanon C, Gajer B. Velocity and stride parameters of world-class 400-meter athletes compared with less experienced runners. J Strength Cond Res. 2009;23(2):524531. PubMed ID: 19209080 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 636 636 153
Full Text Views 18 18 2
PDF Downloads 6 6 2