Test–Retest Reliability and the Effects of Walking Speed on Stride Time Variability During Continuous, Overground Walking in Healthy Young Adults

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Regina
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Studies have investigated the reliability and effect of walking speed on stride time variability during walking trials performed on a treadmill. The objective of this study was to investigate the reliability of stride time variability and the effect of walking speed on stride time variability, during continuous, overground walking in healthy young adults. Participants completed: (1) 2 walking trials at their preferred walking speed on 1 day and another trial 2 to 4 days later and (2) 1 trial at their preferred walking speed, 1 trial approximately 20% to 25% faster than their preferred walking speed, and 1 trial approximately 20% to 25% slower than their preferred walking speed on a separate day. Data from a waist-mounted accelerometer were used to determine the consecutive stride times for each trial. The reliability of stride time variability outcomes was generally poor (intraclass correlations: .167–.487). Although some significant differences in stride time variability were found between the preferred walking speed, fast, and slow trials, individual between-trial differences were generally below the estimated minimum difference considered to be a real difference. The development of a protocol to improve the reliability of stride time variability outcomes during continuous, overground walking would be beneficial to improve their application in research and clinical settings.

The authors are with the Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada.

Bruno (paul.bruno@uregina.ca) is corresponding author.
  • 1.

    Stergiou N, Decker L. Human movement variability, nonlinear dynamics, and pathology: is there a connection? Hum Mov Sci. 2011;30(5):869888. PubMed ID: 21802756 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Hausdorff J. Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking. Hum Mov Sci. 2007;26(4):555589. PubMed ID: 17618701 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Goldberger A, Amaral L, Hausdorff J, Ivanov P, Peng CK, Stanley H. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA. 2002;99(Suppl 1):24662472. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Delignieres D, Marmelat V. Fractal fluctuations and complexity: current debates and future challenges. Crit Rev Biomed Eng. 2012;40(6):485500. PubMed ID: 23356693 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Moon Y, Sung J, An R, Hernandez M, Sosnoff J. Gait variability in people with neurological disorders: a systematic review and meta-analysis. Hum Mov Sci. 2016;47:197208. PubMed ID: 27023045 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    König N, Taylor W, Armbrecht G, Dietzel R, Singh N. Identification of functional parameters for the classification of older female fallers and prediction of “first time” fallers. J R Soc Interface. 2014;11(97):20140353. PubMed ID: 24898021 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Kikkert L, de Groot M, van Campen J, et al. Gait dynamics to optimize fall risk assessment in geriatric patients admitted to an outpatient diagnostic clinic. PLoS One. 2017;12(6):e0178615. PubMed ID: 28575126 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Delignieres D, Ramdani S, Lemoine L, Torre K, Fortes M, Ninot G. Fractal analyses of ‘short’ time series: a re-assessment of classical methods. J Math Psychol. 2006;50(6):525544. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Damouras S, Chang M, Sejdic E, Chau T. An empirical examination of detrended fluctuation analysis for gait data. Gait Posture. 2010;31(3):336340. PubMed ID: 20060298 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Pierrynowski M, Gross A, Miles M, Galea V, McLaughlin L, McPhee C. Reliability of the long-range power-law correlations obtained from the bilateral intervals in asymptomatic volunteers whilst treadmill walking. Gait Posture. 2005;22(1):4650. PubMed ID: 15996591 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Choi JS, Kang DW, Seo JW, Tack GR. Reliability of the walking speed and gait dynamics while walking on a feedback-controlled treadmill. J Biomech. 2015;48(7):13361339. PubMed ID: 25798762 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Wiens C, Denton W, Schieber M, et al. Walking speed and spatiotemporal step mean measures are reliable during feedback-controlled treadmill walking; however, spatiotemporal step variability is not reliable. J Biomech. 2019;83:221226. PubMed ID: 30551920 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Jordan K, Challis J, Newell K. Walking speed influences on gait cycle variability. Gait Posture. 2007;26(1):128134. PubMed ID: 16982195 doi:

  • 14.

    Bollens B, Crevecoeur F, Detrembleur C, Guillery E, Lejeune T. Effects of age and walking speed on long-range autocorrelations and fluctuation magnitude of stride duration. Neuroscience. 2012;210:234242. PubMed ID: 22421102 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Thomas K, Russell D, Van Lunen B, Colberg S, Morrison S. The impact of speed and time on gait dynamics. Hum Mov Sci. 2017;54:320330. PubMed ID: 28641172 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ducharme S, Liddy J, Haddad J, Busa M, Claxton L, van Emmerik R. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking. Hum Mov Sci. 2018;58:248259. PubMed ID: 29505917 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Terrier P, Deriaz O. Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking. J Neuroeng Rehabil. 2011;8(1):12. PubMed ID: 21345241 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Bizovska L, Svoboda Z, Kubonova E, Vuillerme N, Hirjakova Z, Janura M. The differences between overground and treadmill walking in nonlinear, entropy-based and frequency variables derived from accelerometers in young and older women – preliminary report. Acta Bioeng Biomech. 2018;20(1):93100. PubMed ID: 29658527

    • Search Google Scholar
    • Export Citation
  • 19.

    Hausdorff J, Purdon P, Peng CK, Ladin Z, Wei J, Goldberger A. Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J Appl Physiol. 1996;80(5):14481457. PubMed ID: 8727526 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    McCamley J, Donati M, Grimpampi E, Mazza C. An enhanced estimate of initial contact and final contact instants in time using lower trunk inertial sensor data. Gait Posture. 2012;36(2):316318. PubMed ID: 22465705 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Trojaniello D, Cereatti A, Della Croce U. Accuracy, sensitivity and robustness of five different methods for the estimation of gait temporal parameters using a single inertial sensor mounted on the lower trunk. Gait Posture. 2014;40(4):487492. PubMed ID: 25085660 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Caramia C, De Marchis C, Schmid M. Optimizing the scale of a wavelet-based method for the detection of gait events from a waist-mounted accelerometer under different walking speeds. Sensors. 2019;19(8):1869. PubMed ID: 31010114 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Chen Z, Ivanov P, Hu K, Stanley H. Effect of nonstationarities on detrended fluctuation analysis. Phys Rev E. 2002;65(4 Pt 1):041107. doi:

  • 24.

    Chang M, Shaikh S, Chau T. Effect of treadmill walking on the stride interval dynamics of human gait. Gait Posture. 2009;30(4):431435. PubMed ID: 19656682 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Peng CK, Havlin S, Stanley H, Goldberger A. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995;5(1)8287. PubMed ID: 11538314 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Goldberger A, Amaral L, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):E215E220. PubMed ID: 10851218 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Arsac L, Deschodt-Arsac V. Detrended fluctuation analysis in a simple spreadsheet as a tool for teaching fractal physiology. Adv Physiol Educ. 2018;42(3):493499. PubMed ID: 30035630 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Almurad Z, Delignieres D. Evenly spacing in detrended fluctuation analysis. Physica A. 2016;451:6369. doi:

  • 29.

    Weir J. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231240. PubMed ID: 15705040

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Rosner B. Fundamentals of Biostatistics. 8th ed. Boston, MA: Cengage Learning; 2016.

  • 31.

    Al-Amri M, Balushi H, Mashabi A. Intra-rater repeatability of gait parameters during self-paced treadmill-based virtual reality walking. Comput Methods Biomech Biomed Engin. 2017;20(16):16691677. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Sloot L, van der Krogt M, Harlaar J. Self-paced versus fixed speed treadmill walking. Gait Posture. 2014;39(1):478484. PubMed ID: 24055003 doi:

  • 33.

    Choi JS, Kang DW, Seo JW, Tack GR. Fractal fluctuations in spatiotemporal variables when walking on a self-paced treadmill. J Biomech. 2017;65:154160. PubMed ID: 29096982 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Kobsar D, Olson C, Paranjape R, Barden J. The validity of gait variability and fractal dynamics obtained from a single, body-fixed triaxial accelerometer. J Appl Biomech. 2014;30(2):343347. PubMed ID: 24145985 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Kobsar D, Olson C, Paranjape R, Hadjistavropoulos T, Barden J. Evaluation of age-related differences in the stride-to-stride fluctuations, regularity and symmetry of gait using a waist-mounted tri-axial accelerometer. Gait Posture. 2014;39(1):553557. PubMed ID: 24139685 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Clermont C, Barden J. Accelerometer-based determination of gait variability in older adults with knee osteoarthritis. Gait Posture. 2016;50:126130. PubMed ID: 27607303 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Riva F, Bisi M, Stagni R. Gait variability and stability measures: minimum number of strides and within-session reliability. Comp Biol Med. 2014;50:913. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Warlop T, Bollens B, Detrembleur C, Stoquart G, Lejeune T, Crevecoeur F. Impact of series length on statistical precision and sensitivity of autocorrelation assessment of human locomotion. Hum Mov Sci. 2017;55:3142. PubMed ID: 28750259 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Marmelat V, Reynolds N, Hellman A. Gait dynamics in Parkinson’s disease: short gait trials “stitched” together provide different fractal fluctuations compared to longer trials. Front Physiol. 2018;9:861. PubMed ID: 30038582 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Mansour K, Rezzoug N, Gorce P. Analysis of several methods and inertial sensors locations to assess gait parameters in able-bodied subjects. Gait Posture. 2015;42(4):409414. PubMed ID: 26341531 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Warlop T, Detrembleur C, Stoquart G, Lejeune T, Jeanjean A. Gait complexity and regularity are differently modulated by treadmill walking in Parkinson’s disease and healthy population. Front Physiol. 2018;9:68. PubMed ID: 29467673 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Marmelat V, Meidinger R. Fractal analysis of gait in people with Parkinson’s disease: three minutes is not enough. Gait Posture. 2019;70:229234. PubMed ID: 30909002 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 231 231 85
Full Text Views 3 3 1
PDF Downloads 1 1 0